Зарипова Рузиля. "Бумажный самолетик – детская забава и научные исследования". Как сделать самолет из бумаги? Какие условия долгого планирования самолета


Для того, чтобы сделать самолетик из бумаги, потребуется прямоугольный бумажный лист, который может быть как белым, так и цветным. По желанию можно использовать тетрадную, ксероксную, газетную или любую другую бумагу, которая имеется в наличии.

Плотность основы для будущего самолета лучше выбирать ближе к средней, чтобы он далеко летал и при этом его было не слишком трудно складывать (на слишком плотной бумаге обычно сложно фиксировать сгибы и они получаются неровными).

Складываем самую простую фигурку самолета

Начинающим любителям оригами лучше начать с самой простой, знакомой всем с детства модели самолетика:

Для тех, кому не удалось сложить самолет по инструкции, приводим видео мастер-класс:

Если этот вариант надоел еще в школе и вы хотите расширить свои навыки бумажного самолетостроения, расскажем как поэтапно выполнить две несложные вариации предыдущей модели.

Самолет-дальнобойщик

Пошаговая фото-инструкция

  1. Складываем прямоугольный лист бумаги пополам по большей стороне. Загибаем два верхних угла к середине листа. Отворачиваем получившийся угол «долиной», то есть на себя.

  1. Загибаем углы образовавшегося прямоугольника к середине таким образом, чтобы выглядывал небольшой треугольник посередине листа.

  1. Отгибаем маленький треугольник кверху - он будет фиксировать крылья будущего самолета.

  1. Складываем фигуру по оси симметрии, учитывая, что маленький треугольник должен остаться снаружи.

  1. Загибаем крылья с обоих боков к основе.

  1. Выставляем под углом 90 градусов оба крыла самолета, чтобы далеко летал.

  1. Таким образом, не потратив много времени, получаем далеколетный самолетик!

Схема складывания

  1. Складываем бумажный прямоугольный лист вдоль его большей стороны пополам.

  1. Загибаем два верхних угла к середине листа.

  1. Заворачиваем «долиной» углы по пунктирной линии. В технике оригами «долиной» называется выполнение сгиба участка листа по определенной линии в направлении «на себя».

  1. Складываем получившуюся фигуру по оси симметрии таким образом, чтобы уголки оказались снаружи. Обязательно проследите за тем, чтобы контуры обоих половинок будущего самолетика совпали. От этого зависит, как он будет в дальнейшем летать.

  1. Загибаем крылья по обоим бокам самолета, как показано на рисунке.

  1. Убедитесь, что угол между крылом самолета и его фюзеляжем составляет 90 градусов.

  1. Получился вот такой быстрый самолетик!

Как сделать так, чтобы самолетик далеко летал?

Хотите научиться правильно запускать бумажный самолет, который вы только сделали своими руками? Тогда внимательно ознакомьтесь с правилами его управления:

Если все правила соблюдаются, но модель все равно летает не так, как хотелось бы, попробуйте усовершенствовать ее следующим образом:

  1. Если самолет постоянно норовит резко взмыть вверх, а затем, совершая мертвую петлю, резко уходит вниз, врезаясь носом в землю, ему требуется апгрейд в виде увеличения плотности (веса) носовой части. Это можно сделать немного загнув нос бумажной модели вовнутрь, как показано на картинке, или прикрепив нему снизу канцелярскую скрепку.
  2. В случае, если при полете модель летит не прямо, как нужно, а в сторону, оснастите ее рулем поворота, загнув часть крыла по линии, изображенной на рисунке.
  3. Если самолетик уходит в штопор, ему срочно необходим хвост. Вооружившись ножницами, сделайте ему быстрый и функциональный апгрейд.
  4. А вот если, модель во время испытаний заваливается набок, скорее всего причиной неудачи служит отсутствие стабилизаторов. Чтобы добавить их к конструкции, достаточно загнуть крылья самолета по краям по указанным пунктиром линиям.

Также предлагаем вашему вниманию видео инструкцию по изготовлению и испытанию интересной модели самолета, который способен не только далеко, но и невероятно долго летать:

Теперь, когда вы уверены в своих силах и уже набили руку на складывании и запуске простых самолетиков, предлагаем инструкции, которые расскажут вам, как сделать самолет из бумаги более сложной модели.

Самолет-невидимка F-117 («Ночной ястреб»)

Самолет-бомбовоз

Схема выполнения

  1. Берем прямоугольный листок бумаги. Верхнюю часть прямоугольника складываем двойным треугольником: для этого отгибаем правый верхний угол прямоугольника таким образом, чтобы его верхняя сторона совпала с левой боковой стороной.
  2. Затем по аналогии загибаем левый угол, совмещая верхнюю часть прямоугольника с его правой боковой стороной.
  3. Через точку пересечения полученных линий выполняем сгиб, который в итоге должен быть параллелен меньшей стороне прямоугольника.
  4. По этой линии складываем внутрь получившиеся боковые треугольники. Должна получиться фигура, показанная на рисунке 2. Намечаем линию посередине листа в нижней части по аналогии с рисунком 1.

  1. Обозначаем линию, параллельную основанию треугольника.

  1. Переворачиваем фигуру на обратную сторону и отгибаем угол по направлению «на себя». Должна получиться следующая бумажная конструкция:

  1. Снова перекладываем фигуру на другую сторону и загибаем два уголка вверх, предварительно согнув верхнюю часть вдвое.

  1. Переворачиваем фигуру обратно и отгибаем угол вверх.

  1. Сворачиваем левый и правый углы, обведенные на рисунке кружком, в соответствии с картинкой 7. Такая схема позволит добиться правильного изгиба угла.

  1. Загибаем угол от себя и складываем фигуру по средней линии.

  1. Заводим края вовнутрь, вновь складываем фигуру пополам, а потом на себя.

  1. В конечном итоге, у вас получится вот такая бумажная игрушка - самолет-бомбовоз!

Бомбардировщик СУ-35

Истребитель «Остроносый ястреб»

Пошаговая схема выполнения

  1. Берем листик бумаги прямоугольной формы, сгибаем его пополам вдоль большей стороны и намечаем середину.

  1. Отгибаем по направлению «на себя» два угла прямоугольника.

  1. Сгибаем углы фигуры по пунктирной линии.

  1. Складываем фигуру поперек таким образом, чтобы острый угол оказался на середине противоположной стороны.

  1. Переворачиваем полученную фигуру на обратную сторону и формируем две складки, как показано на рисунке. Очень важно, чтобы складки были сложены не к средней линии, а под небольшим углом к ней.

  1. Получившийся угол сгибаем на себя и одновременно отворачиваем вперед угол, который после всех манипуляций будет находиться на обратной стороне макета. Должна получиться фигура, как показано на рисунке ниже.

  1. Загибаем фигуру пополам от себя.

  1. Опускаем крылья самолетика по пунктирной линии.

  1. Подгибаем немного концы крыльев для получения так называемых винглетов. Затем расправляем крылья так, чтобы они образовали с фюзеляжем прямой угол.

Бумажный истребитель готов!

Истребитель «Планирующий ястреб»

Инструкция по изготовлению:

  1. Берем прямоугольный листок бумаги и намечаем середину, сложив его пополам вдоль большей стороны.

  1. Загибаем внутрь к середине два верхних угла прямоугольника.

  1. Переворачиваем лист на обратную сторону и загибаем складки по направлению «на себя» к центральной линии. Очень важно, чтобы верхние углы при этом не перегибались. Должна получиться вот такая фигурка.

  1. Сворачиваем верхнюю часть квадрата по диагонали к себе.

  1. Получившуюся фигуру складываем пополам.

  1. Намечаем складочку также, как показано на рисунке.

  1. Заправляем внутрь прямоугольную часть фюзеляжа будущего самолетика.

  1. Отгибаем крылышки вниз по линии пунктира под прямым углом.

  1. Получился вот такой бумажный самолетик! Осталось посмотреть, как он летает.

Истребитель F-15 Eagle

Самолет «Конкорд»

Следуя приведенным фото- и видео-инструкциям вы сможете своими руками за несколько минут сделать самолет из бумаги, игра с которым станет приятным и занимательным времяпрепровождением для вас и ваших детей!

Палкин Михаил Львович

  • Самолёты из бумаги – хорошо всем нам известная поделка из бумаги, которую умеет делать практически каждый. Или умел делать раньше, но немного забыл. Не беда! Ведь сложить самолёт можно в течение нескольких секунд, вырвав лист из обычной школьной тетради.
  • Одна из главных проблем бумажного самолёта - малое время полёта. Поэтому хочется узнать, зависит ли продолжительность полёта от его формы. Тогда можно будет посоветовать одноклассникам сделать такой самолёт, который побьёт все рекорды.

Объект исследования

Бумажные самолёты разных форм.

Предмет исследования

Продолжительность полёта бумажных самолётов разных форм.

Гипотеза

  • Если менять форму бумажного самолёта, то можно увеличить продолжительность его полёта.

Цель

  • Определить модель бумажного самолёта с наиболее продолжительной длительностью полёта.

Задачи

  • Выяснить, какие формы бумажного самолёта существуют.
  • Сложить бумажные самолёты по различным схемам.
  • Определить, зависит ли продолжительность полёта от его формы.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследовательская работа члена научного общества «Умка» МОУ «Лицей №8 г.Новоалтайска » Палкина Михаила Львовича Научный руководитель Овсепян Гоар Матевосовна

Тема: «Мой бумажный самолёт отправляется в полёт!» (зависимость продолжительности полёта бумажного самолёта от его формы)

Актуальность выбранной темы Самолёты из бумаги – хорошо всем нам известная поделка из бумаги, которую умеет делать практически каждый. Или умел делать раньше, но немного забыл. Не беда! Ведь сложить самолёт можно в течение нескольких секунд, вырвав лист из обычной школьной тетради. Одна из главных проблем бумажного самолёта - малое время полёта. Поэтому хочется узнать, зависит ли продолжительность полёта от его формы. Тогда можно будет посоветовать одноклассникам сделать такой самолёт, который побьёт все рекорды.

Объект исследования – бумажные самолёты разных форм. Предмет исследования – продолжительность полёта бумажных самолётов разных форм.

Гипотеза Если менять форму бумажного самолёта, то можно увеличить продолжительность его полёта. Цель Определить модель бумажного самолёта с наиболее продолжительной длительностью полёта. Задачи Выяснить, какие формы бумажного самолёта существуют. Сложить бумажные самолёты по различным схемам. Определить, зависит ли продолжительность полёта от его формы.

Методы: Наблюдение. Эксперимент. Обобщение. План исследования: Выбор темы – май 2011 г. Формулирование гипотезы, цели и задач – май 2011 г. Изучение материала – июнь – август 2011г. Проведение опытов – июнь-август 2011 г. Анализ полученных результатов – сентябрь-ноябрь 2011 г.

Существует множество способов сложить бумагу, чтобы получился самолётик. Какие-то варианты достаточно сложны, а какие-то просты. Для каких-то лучше использовать мягкую тонкую бумагу, а для каких-то наоборот более плотную. Бумага податлива и в то же время обладает достаточной жёсткостью, сохраняет заданную форму, благодаря чему делать из неё самолётики проще простого. Рассмотрим простой вариант бумажного самолётика, который известен каждому.

Самолетик, который многие называют «муха». Легко сворачивается, летит быстро и далеко. Конечно, чтобы научиться его правильно запускать, придется немного потренироваться. Ниже ряд последовательных рисунков покажет вам, как сделать самолет из бумаги. Смотрите и пробуйте делать!

Сперва согните лист бумаги ровно пополам, затем отогните один из его уголков. Теперь уже не трудно, согнуть таким же образом и вторую сторону. Сгибаем, как показано на рисунке.

Сгибаем уголки к центру, оставив между ними небольшое расстояние. Сгибаем уголок, закрепляя тем самым углы фигуры.

Согнем фигуру пополам Отогнем «крылья», ровняя по низу фигуры с обеих сторон Ну вот теперь вы знаете, как сделать оригами самолет из бумаги.

Существует и другие варианты сборки летающей модели самолета.

Сложив бумажный самолетик, можно раскрасить его цветными карандашами, приклеить опознавательные знаки.

Вот, что получилось у меня.

Чтобы выяснить, зависит ли продолжительность полета самолёта от его формы, попробуем запустить разные модели по очереди и сравнить их полёт. Проверено, летает замечательно! Иногда при запуске, он может лететь « носом вниз», но это поправимо! Просто слегка загните кончики крыльев вверх. Обычно полет такого самолетика состоит из быстрого взмывания вверх и пикирования вниз.

Одни самолетики летят прямолинейно, другие же по какому-нибудь извилистому пути. Самолеты для максимально длительных полетов имеют большой размах крыльев. Самолеты, по форме напоминающие дротик – они такие же узкие и длинные – летят с большей скоростью. Такие модели летают быстрее и стабильнее, их проще запускать.

Мои открытия: 1. Моим первым открытием стало то, что он действительно летает. Не беспорядочно и криво, как обычная школьная игрушка, а прямо, быстро и далеко. 2. Второе открытие - то, что сложить бумажный самолётик не так просто, как кажется. Действия должны быть уверенными и точными, сгибы – идеально прямыми. 3 . Запуск на открытом воздухе отличается от комнатных полётов (ветер либо мешает, либо помогает ему в полёте). 4 . Главное открытие - продолжительность полёта существенно зависит конструкции самолётов.

Используемый материал: www.stranaorigami.ru www.iz-bumagi.com www.mykler.ru www.origami-paper.ru Спасибо за внимание!

Транскрипт

1 Научно-исследовательская работа Тема работы Идеальный бумажный самолетик Выполнил: Прохоров Виталий Андреевич учащийся 8 класса МОУ Смеловской СОШ Руководитель: Прохорова Татьяна Васильевна учитель истории и обществознания МОУ Смеловская СОШ 2016г.

2 Содержание Введение Идеальный самолетик Слагаемые успеха Второй закон Ньютона при запуске самолетика Силы, действующие на самолет в полете Про крыло Запуск самолетика Испытания самолетиков Модели самолетиков Испытание на дальность полета и время планирования Модель идеального самолетика Подведем итоги: теоретическая модель Своя модель и ее испытание Выводы Список литературы Приложение 1. Схема воздействия сил на самолетик в полете Приложение 2. Лобовое сопротивление Приложение 3. Удлинение крыла Приложение 4. Стреловидность крыла Приложение 5. Средней аэродинамической хордой крыла (САХ) Приложение 6. Форма крыла Приложение 7. Циркуляция воздуха вокруг крыла Приложение 8. Угол запуска самолетика Приложение 9. Модели самолетиков для эксперимента

3 Введение Бумажный самолёт (самолётик) игрушечный самолёт, сделанный из бумаги. Вероятно, он является наиболее распространённой формой аэрогами, одной из ветвей оригами (японского искусства складывания бумаги). Пояпонски такой самолёт называется 紙飛行機 (ками хикоки; ками=бумага, хикоки=самолёт). Несмотря на кажущуюся несерьезность этого занятия, оказалось, что пускание самолетиков - целая наука. Родилась она в 1930 году, когда Джек Нортроп, основатель компании Lockheed Corporation, использовал бумажные самолётики для тестирования новых идей при конструкции реальных самолётов. А спортивные состязания по запусканию самолетиков из бумаги Red Bull Paper Wings проходят на мировом уровне. Придумал их британец Энди Чиплинг. Многие годы он с друзьями занимался созданием бумажных моделей, в 1989 году основал Ассоциацию Бумажного Авиастроения. Именно он написал свод правил по запуску бумажных самолетов, которые используют специалисты книги рекордов Гиннеса и которые стали официальными установками мирового первенства. Оригами, а затем именно аэрогами стало уже давно моим увлечением. Я собирал различные модели самолетиков из бумаги, но некоторые из них отлично летали, а другие сразу падали. Почему же это происходит, как сделать модель идеального самолетика (длительно и далеко летающего)? Соединив свое увлечение со знаниями по физике, я приступил к своему исследованию. Цель исследования: применив законы физики, создать модель идеального самолетика. Задачи: 1. Изучить основные законы физики, влияющие на полет самолетика. 2. Вывести правила создания идеального самолетика. 3

4 3. Исследовать уже созданные модели самолетиков на близость к теоретической модели идеального самолетика. 4. Создать свою модель самолетика, близкого к теоретической модели идеального самолетика. 1.Идеальный самолетик 1.1. Слагаемые успеха Сначала разберемся с вопросом о том, как сделать хороший бумажный самолет. Видь главная функция самолетика это способность летать. Как изготовить самолет, обладающий наилучшими характеристиками. Для этого сначала обратимся к наблюдениям: 1. Самолетик летит тем быстрее и дольше, чем сильнее будет бросок, за исключением случаев, когда что-то (чаще всего трепещущий клочок бумаги в носовой части или болтающиеся опущенные крылья) создает сопротивление и замедляет продвижение самолетика вперед. 2. Как бы мы не старались швырнуть лист бумаги у нас не получится зашвырнуть его так же далеко, как маленький камушек, имеющий такой же вес. 3. Для бумажного самолетика длинные крылья бесполезны, короткие крылья эффективнее. Тяжелые по весу самолетики не летят далеко 4. Еще один ключевой фактор, который следует принять во внимание, угол, под которым самолет движется вперед. Обратившись к законам физики, мы находим причины наблюдаемых явлений: 1. Полеты бумажных самолетов подчиняются второму закону Ньютона: сила (в данном случае подъемная) равна скорости изменения количества движения. 2. Все дело в сопротивлении, сочетании сопротивления воздуха и турбулентности. Сопротивление воздуха, вызванное его вязкостью, пропорционально площади поперечного сечения лобовой части самолета, 4

5 иначе говоря, зависит от того, насколько велик нос самолета, если смотреть на него спереди. Турбулентность результат действия вихревых воздушных потоков, образующихся вокруг самолета. Она пропорциональна площади поверхности самолета, обтекаемая форма значительно снижает ее. 3. Большие крылья бумажного самолетика обвисают и не могут сопротивляться сгибающему воздействию подъемной силы, утяжеляют самолетик и увеличивают сопротивление. Лишний вес мешает самолету лететь далеко, и этот вес, как правило, создают крылья, а наибольшая подъемная сила возникает в области крыла, ближайшей к осевой линии самолета. Следовательно, крылья должны быть очень короткими. 4. При запуске воздух должен ударяться о нижнюю поверхность крыльев и отклоняться вниз, обеспечивая действие соответствующей подъемной силы на самолет. Если самолет расположен не под углом к направлению движения и его нос не приподнят вверх, подъемная сила не возникает. Ниже мы рассмотрим основные физические законы, воздействующие на самолетик, более подробно Второй закон Ньютона при запуске самолетика Мы знаем, что скорость тела изменяется под действием приложенной к нему силы. Если на тело действуют несколько сил, то находят равнодействующую этих сил, то есть некую общую суммарную силу, обладающую определенным направлением и числовым значением. Фактически, все случаи приложения различных сил в конкретный момент времени можно свести к действию одной равнодействующей силы. Поэтому, чтобы найти, как изменилась скорость тела, нам надо знать, какая сила действует на тело. В зависимости от величины и направления силы тело получит то или иное ускорение. Это четко видно при запуске самолетика. Когда мы подействовали на самолетик с небольшой силой, он ускорился не очень сильно. Когда же сила 5

6 воздействия увеличилась, то самолетик приобрел гораздо большее ускорение. То есть, ускорение связано с приложенной силой прямо пропорционально. Чем больше сила воздействия, тем большее ускорение приобретает тело. Масса тела напрямую также связана с ускорением, приобретаемым телом в результате воздействия силы. При этом, масса тела обратно пропорциональна полученному ускорению. Чем больше масса, тем меньше будет величина ускорения. Исходя из всего вышесказанного, приходим к тому, что при запуске самолетик подчиняется второму закону Ньютона, который выражается формулой: a =F / m, где a - ускорение, F - сила воздействия, m - масса тела. Определение второго закона звучит так: ускорение, приобретаемое телом в результате воздействия на него, прямо пропорционально силе или равнодействующей сил этого воздействия и обратно пропорционально массе тела . Таким образом, первоначально самолетик подчиняется второму закону Ньютона и дальность полета также зависит от заданной первоначальной силы и массы самолетика. Поэтому первые правила для создания идеального самолётика вытекают из него: самолетик должен быть легким, первоначально придать самолетику большую силу Силы, действующие на самолет в полете. Когда самолетик летит на него влияет множество сил, обусловленных наличием воздуха, но все их можно представить в виде четырех главных сил: силы тяжести, подъемной силы, силы заданной при запуске и силы сопротивления воздуха (лобовое сопротивление) (см. приложение 1). Сила тяжести остается всегда постоянной. Подъемная сила противодействует весу самолета и может быть больше или меньше веса, в зависимости от количества энергии, затрачиваемой на движение вперед. Силе, заданной при запуске, противодействует сила сопротивления воздуха (иначе лобовое сопротивление). 6

7 При прямолинейном и горизонтальном полете эти силы взаимно уравновешиваются: сила, заданная при запуске, равна силе сопротивления воздуха, подъемная сила равна весу самолета. Ни при каком ином соотношении этих четырех основных сил прямолинейный и горизонтальный полет невозможен . Любое изменение любой из этих сил повлияет на характер полета самолета. Если подъемная сила, создаваемая крыльями, увеличивается по сравнению с силой тяжести, то самолетик поднимается вверх. И наоборот, уменьшение подъемной силы против силы тяжести вызывает снижение самолета, т. е. потерю высоты и его падение. Если равновесие сил не будет соблюдаться, то самолет будет искривлять траекторию полета в сторону преобладающей силы. Остановимся подробнее на лобовом сопротивлении, как одном из важных факторов в аэродинамике. Лобовое сопротивление сила, препятствующая движению тел в жидкостях и газах. Лобовое сопротивление складывается из двух типов сил: сил касательного (тангенциального) трения, направленных вдоль поверхности тела, и сил давления, направленных к поверхности(приложение 2) . Сила сопротивления всегда направлена против вектора скорости тела в среде и вместе с подъёмной силой являются составляющей полной аэродинамической силы. Сила лобового сопротивления обычно представляется в виде суммы двух составляющих: сопротивления при нулевой подъёмной силе (вредное сопротивление) и индуктивного сопротивления. Вредное сопротивление возникает в результате воздействия скоростного напора воздуха на элементы конструкции самолета (все выступающие части самолетика создают вредное сопротивление при движении сквозь воздух). Кроме того, в местах соединения крыла и «тела» самолетика, а также у хвостовой части возникают завихрения воздушного потока, которые также дают вредное сопротивление. Вредное 7

8 сопротивление увеличивается как квадрат ускорения самолета (если вы увеличиваете скорость в два раза, вредное сопротивление возрастает в четыре раза) . В современной авиации скоростные самолеты несмотря на острые кромки крыльев и сверхобтекаемую форму испытывают существенный нагрев обшивки, когда превозмогают силу лобового сопротивления мощью своих двигателей (например, самый скоростной в мире высотный самолет-разведчик SR-71 Черная Птица защищен специальным теплоустойчивым покрытием) . Второй компонент сопротивления индуктивное сопротивление - это побочный продукт подъемной силы. Он возникает, когда воздух перетекает из области высокого давления перед крылом в разреженную среду позади крыла. Особенное воздействие индуктивного сопротивления ощутимо на малых скоростях полета, что и наблюдается у бумажных самолетиков (Наглядный пример этого явления, можно увидеть у настоящих самолетов при заходе на посадку. Самолет задирает нос при заходе на посадку, двигатели начинают гудеть сильнее увеличивая тягу). Индуктивное сопротивление, аналогично вредному сопротивлению находится в соотношении один к двум с ускорением самолета . А теперь немного о турбулентности. Толковый словарь энциклопедии «Авиация» дает определение: «Турбулентность это случайное образование нелинейных фрактальных волн при увеличении скорости в жидкой или газообразной среде» . Если говорить своими словами, то это физическое свойство атмосферы, в которой постоянно изменяются давление, температура, направление и скорость ветра. Из-за этого воздушные массы становятся неоднородными по своему составу и плотности. И при полете наш самолетик может угодить в нисходящие («прибивают» к земле) или восходящие (лучше для нас, т.к. поднимают самолетик от земли) воздушные потоки, а также эти потоки могут двигаться хаотично, закручиваться (тогда самолетик летит непредсказуемо, вертится и закручивается). 8

9 Итак, выводим из сказанного необходимые качества создания идеального самолетика в полете: Идеальный самолетик должен быть длинным и узким, суживающимся к носу и хвосту, как стрела, со сравнительно малой площадью поверхности для своего веса. Обладающий этими характеристиками самолетик пролетает большее расстояние. Если бумага сложена так, что нижняя поверхность самолетика ровная и горизонтальная, подъемная сила будет действовать на него по мере снижения и увеличивать дальность полета. Как уже отмечалось выше, подъемная сила возникает при ударе воздуха о нижнюю поверхность самолета, который летит, слегка приподняв нос Про крыло. Размах крыла это расстояние между плоскостями, параллельными плоскости симметрии крыла, и касающимися его крайних точек. Размах крыла важная геометрическая характеристика летательного аппарата, оказывающая влияние на его аэродинамические и лётно-технические характеристики, а также является одним из основных габаритных размеров самолета . Удлинение крыла - отношение размаха крыла к его средней аэродинамической хорде (приложение3). Для непрямоугольного крыла удлинение = (квадрат размаха)/площадь. Это можно понять, если за основу возьмём прямоугольное крыло, формула будет проще: удлинение = размах/хорду. Т.е. если крыло имеет размах 10 метров, а хорда = 1 метр, то удлинение будет = 10. Чем больше удлинение- тем меньше индуктивное сопротивление крыла, связанное с перетеканием воздуха с нижней поверхности крыла на верхнюю через законцовку с образованием концевых вихрей. В первом приближении можно считать, что характерный размер такого вихря равен хорде- и с ростом размаха вихрь становится всё меньше и меньше по сравнению с размахом крыла . 9

10 Естественно, чем меньше индуктивное сопротивление- тем меньше и общее сопротивление системы, тем выше аэродинамическое качество. Естественно, возникает соблазн сделать удлинение как можно больше . И тут начинаются проблемы: наряду с применением высоких удлинений нам приходится увеличивать прочность и жёсткость крыла, что влечет за собой непропорциональное увеличение массы крыла. С точки зрения аэродинамики наиболее выгодным будет такое крыло, которое обладает способностью создавать возможно большую подъемную силу при возможно меньшем лобовом сопротивлении. Для оценки аэродинамического совершенства крыла вводится понятие аэродинамического качества крыла. Аэродинамическим качеством крыла называется отношение подъемной силы к силе лобового сопротивления крыла . Наилучшей в аэродинамическом отношении является эллипсовидная форма, но такое крыло сложно в производстве, поэтому редко применяется. Прямоугольное крыло менее выгодно с точки зрения аэродинамики, но значительно проще в изготовлении. Трапециевидное крыло по аэродинамическим характеристикам лучше прямоугольного, но несколько сложнее в изготовлении. Стреловидные и треугольные в плане крылья в аэродинамическом отношении на низких скоростях уступают трапециевидным и прямоугольным (такие крылья применяются на самолетах, летающих на околозвуковых и сверхзвуковых скоростях). Крыло эллиптической формы в плане обладает самым высоким аэродинамическим качеством- минимально возможным сопротивлением при максимальной подъемной силе. К сожалению, крыло такой формы применяется не часто из-за сложности конструкции (пример применения крыла такого вида- английский истребитель "Спитфайер") (приложение 6) . Стреловидность крыла угол отклонения крыла от нормали к оси симметрии самолёта, в проекции на базовую плоскость самолета. При этом положительным считается направление к хвосту (приложение 4). Существует 10

11 стреловидность по передней кромке крыла, по задней кромке и по линии четверти хорд. Крыло обратной стреловидности (КОС) крыло с отрицательной стреловидностью (примеры моделей самолетов с обратной стреловидностью: Су-47 "Беркут", Чехословацкий планер LET L-13) . Нагрузка на крыло отношение веса летательного аппарата к площади несущей поверхности. Выражается в кг/м² (для моделей- гр/дм²). Чем меньше нагрузка, тем меньшая скорость требуется для полета. Средней аэродинамической хордой крыла (САХ) называется отрезок прямой, соединяющей две наиболее удаленные друг от друга точки профиля. Для крыла, прямоугольного в плане, САХ равна хорде крыла (приложение 5). Зная величину и положение САХ на самолете и приняв ее как базовую линию, определяют относительно нее положение центра тяжести самолета, которое измеряется в % длины САХ. Расстояние от центра тяжести до начала САХ, выраженное в процентах ее длины, называется центровкой самолета. Выяснить центр тяжести у бумажного самолетика можно проще: возьмите иголку с ниткой; проткните самолет иголкой и позвольте ему повиснуть на нитке. Точка, в которой самолет будет балансировать с идеально плоскими крыльями, и есть центр тяжести. И еще немного о профиле крыла это форма крыла в поперечном сечении. Профиль крыла оказывает сильнейшее влияние на все аэродинамические характеристики крыла. Типов профилей достаточно много, потому что кривизна верхней и нижней поверхностей у разных типов разная, как, впрочем, и толщина самого профиля (приложение 6) . Классика это когда низ близок к плоскости, а верх выпуклый по определенному закону. Это так называемый несимметричный профиль, но есть и симметричные, когда верх и низ имеют одинаковую кривизну. Разработка аэродинамических профилей проводилась практически с начала истории авиации, проводится она и сейчас (в России разработками для настоящих самолетов занимается ЦАГИ Центральный аэрогидродинамический 11

12 институт имени профессора Н.Е. Жуковского, в США такие функции выполняет Исследовательский центр в Лэнгли (подразделение NASA)) . Сделаем выводы из выше сказанного о крыле самолетика: У традиционного самолета длинные узкие крылья ближе к середине, основной части, уравновешены маленькими горизонтальными крыльями ближе к хвосту. Бумаге недостает прочности для таких сложных конструкций, она легко гнется и сминается, особенно в процессе запуска. Это означает, что бумажные крылья теряют аэродинамические характеристики и создают сопротивление. Самолетик традиционной конструкции обтекаемый и довольно прочный аппарат, его дельтовидные крылья дают стабильное скольжение, однако они сравнительно велики, создают избыточное торможение и могут потерять жесткость. Данные трудности преодолимы: Маленькие и более прочные подъемные поверхности в форме дельтовидных крыльев сделаны из двух или нескольких слоев сложенной бумаги, они лучше сохраняют форму при скоростном запуске. Крылья можно сложить так, чтобы на верхней поверхности образовалась небольшая выпуклость, увеличивающая подъемную силу, как на крыле настоящего самолета (приложение 7). Прочно сложенная конструкция имеет массу, которая увеличивает момент при запуске, но без существенного роста сопротивления. Если передвинуть дельтовидные крылья вперед и уравновесить подъемную силу длинным плоским телом самолета, имеющим V-образную форму ближе к хвосту, которая препятствует боковым движениям (отклонениям) в полете, можно сочетать в одной конструкции наиболее ценные характеристики бумажного самолетика. 1.5 Запуск самолетика 12

13 Давайте начнем с основ. Никогда не держите свой бумажный самолет за заднюю кромку крыла (хвоста). Так как сильно изгибается бумага, а это очень плохо для аэродинамики, любая тщательная подгонка будет нарушена. Самолет лучше держать за самый толстый набор слоев бумаги около носовой части. Обычно эта точка находится близко к центру тяжести самолета. Чтобы отправить самолет на максимальную дистанцию, нужно как можно сильнее бросить его вперед и вверх под углом 45 градусов (по параболе), что подтвердил наш эксперимент с запуском под разным углом к поверхности (приложение 8). Это объясняется тем, что при запуске воздух должен ударяться о нижнюю поверхность крыльев и отклоняться вниз, обеспечивая действие соответствующей подъемной силы на самолет. Если самолет расположен не под углом к направлению движения и его нос не приподнят вверх, подъемная сила не возникает. У самолета, как правило, большая часть веса смещена назад, это означает, что задняя часть опущена, нос приподнят и действие подъемной силы гарантировано. Она уравновешивает самолетик, позволяя ему лететь (за исключением случаев, когда подъемная сила слишком велика, в результате чего самолет резко взмывает вверх и падает). В состязаниях на время полета следует забросить самолет на максимальную высоту, чтобы он дольше планировал вниз. В целом техники запуска пилотажных самолетиков так же разнообразны, как и их конструкции. И так техника запуска идеального самолетика: Правильный захват должен быть достаточно крепким, чтобы удержать самолет, но не настолько крепким, чтобы его деформировать. Выступ из сложенной бумаги на нижней поверхности под носом самолетика можно использовать как держатель при запуске. При запуске держать самолетик под углом 45 градусов на максимальную высоту. 2.Испытания самолетиков 13

14 2.1. Модели самолетиков С целью подтвердить (или опровергнуть, если они ошибочны для бумажных самолетиков) мы отобрали 10 моделей самолётиков, различных по характеристикам: стреловидность, размах крыльев, плотнось конструкции, дополнительные стабилизаторы. И конечно мы взяли, классическую модель самолетика, чтобы также исследовать выбор многих поколений (приложение 9) 2.2. Испытание на дальность полета и время планирования. 14

15 Название модели Дальнос ть полета (м) Длительно сть полета (ударов метронома) Особенности при запуске Плюсы Минусы 1. Закручивается Планирует Слишком Крылан Плохо управляем Ровный низ большие крылья Большая Не планирует турбулентность 2. Закручивается Планирует Крылья широкие Хвостик Плохо Не стабилен в полете Турбулентность управляем 3. Пикирует Узкий нос Турбулентность Охотник Закручивается Плоский низ Вес носовой Узкое тело части 4. Планирует Плоский низ Большие крылья Планер Гиннесса Летит по дуге Дугообразность Узкое тело Длительное Дугообразный полет планирование 5. Летит по Суженные крылья Широкое тело прямой, в Стабилизаторы полета Нет Жук конце полета дугообразности резко меняет Резкое изменение траекторию полета 6. Летит прямой Плоский низ Широкое тело Традиционный хорошо Небольшие крылья Нет планирует дугообразности 15

16 7. Пикирует Суженные крылья Тяжелый нос Летит по впереди Большие крылья, прямой Узкое тело смещенные назад Пикировщик Дугообразность (за счет закрылок на крыле) Плотность конструкции 8. Разведчик Летит по Маленькое тело Широкие крылья прямой Планирует Маленький размер по длине Дугообразность Плотная конструкция 9. Белый лебедь Летит по Узкое тело прямой Стабилен Узкие крылья в Плоский низ полете Плотная конструкция Уравновешен 10. Стелс Летит по Дугообразность прямой Планирует Меняет траекторию Ось крыльев сужена назад Нет дугообразности Широкие крылья Большое тело Не плотность конструкции Длительность полета (от большего к меньшему): Планер Гиннесса и Традиционный, Жук, Белый лебедь Длина полета (от большего к меньшему): Белый лебедь, Жук и традиционный, Разведчик. В лидеры по двум категориям вышли: Белый лебедь и Жук. Изучить данные модели и соединив с теоретическими выводами, взять их за основу для модели идеального самолетика. 3.Модель идеального самолетика 3.1 Подведем итоги: теоретическая модель 16

17 1. самолетик должен быть легким, 2. первоначально придать самолетику большую силу, 3. длинным и узким, суживающимся к носу и хвосту, как стрела, со сравнительно малой площадью поверхности для своего веса, 4. нижняя поверхность самолетика ровная и горизонтальная, 5. маленькие и более прочные подъемные поверхности в форме дельтовидных крыльев, 6. крылья сложить так, чтобы на верхней поверхности образовалась небольшая выпуклость, 7. передвинуть крылья вперед и уравновесить подъемную силу длинным плоским телом самолета, имеющим V-образную форму к хвосту, 8. прочно сложенная конструкция, 9. захват должен быть достаточно крепким и за выступ на нижней поверхности, 10. запускать под углом 45 градусов и на максимальную высоту. 11. Используя данные, мы сделали наброски идеального самолетика: 1. Вид с боку 2. Вид снизу 3. Вид спереди Создав наброски идеального самолетика, я обратился к истории авиации, узнать совпадают ли мои выводы с авиаконструкторами. И я нашел прототип самолета с дельтовидным крылом, разработанным еще после Второй мировой войны: Convair XF-92 - точечный перехватчик (1945г.). И подтверждением правильности выводов то, что он стал отправной точкой для нового поколения самолётов. 17

18 Своя модель и ее испытание. Название модели Дальность полета (м) Длительность полета (ударов метронома) ИД Особенности при запуске Плюсы (близость к идеальному самолетику) Минусы (отклонения от идеального самолетика) Летит по 80% 20% прямой (совершенству (для дальнейших Управляем Планирует нет предела) доработок) При резком встречном ветре «встает» под 90 0 разворачивает ся Моя модель сделана на основе моделей из использованных в практической части, наибольшее сходство с «белым лебедем». Но при этом мною внесено ряд значительных преобразований: большая дельтавидность крыла, изгиб крыла (как у «разведчика» и ему подобных), уменьшен корпус, корпусу предана дополнительная жесткость конструкции. Нельзя сказать, что я полностью доволен своей моделью. Хотелось бы уменьшить нижний корпус, оставив такую же плотность конструкции. Крыльям можно придать большую дельтавидность. Продумать хвостовую часть. Но иначе и быть не может, впереди есть время для дальнейшего изучения и творчества. Именно так поступают профессионалы авиаконструкторы, у них многому можно поучиться. Чем я и буду заниматься в своем увлечении. 17

19 Выводы В результате исследования мы ознакомились с основными законами аэродинамики, влияющими на самолетик. На основе этого вывели правила оптимальное сочетание которых способствуют созданию идеального самолетика. Для проверки теоретических выводов на практике, сложили модели бумажных самолетов различные по сложности складывания, дальности и продолжительности полета. В ходе эксперимента составили таблицу, где проявившиеся недостатки моделей сопоставили с теоретическими выводами. Сопоставив данные теории и эксперимента, создал модель моего идеального самолетика. Его еще надо дорабатывать, приближая к совершенству! 18

20 Список литературы 1. Энциклопедия «Авиация»/ сайт Академик %D0%BB%D0%B5%D0%BD%D1%82%D0%BD%D0%BE%D1%81%D1% 82%D1%8C 2. Коллинз Дж. Самолеты из бумаги/ Дж. Коллинз: пер. с англ. П. Миронова. М.: Мани, Иванов и Фербер, 2014г. 160с Бабинцев В. Аэродинамика для чайников и учёных / портал Проза.ру 4. Бабинцев В. Эйнштейн и подъёмная сила, или Зачем змею хвост/ портал Проза.ру 5. Аржаников Н.С., Садекова Г.С., Аэродинамика летательных аппаратов 6. Модели и методы аэродинамики / 7. Ушаков В.А., Красильщиков П.П.,Волков А.К., Гржегоржевский А.Н., Атлас аэродинамических характеристик профилей крыльев/ 8. Аэродинамика самолета / 9. Движение тел в воздухе / эл. жур. Аэродинамика в природе и технике. Краткие сведения по аэродинамике Как летают бумажные самолетики?/ Интересник. Интересная и прикольная наука г Чернышев С. Почему самолёт летает? С. Чернышев, директор ЦАГИ. Журнал "Наука и Жизнь", 11, 2008 год/ ВВС СГВ» 4-я ВА ВГК - форум частей и гарнизонов «Авиационная и аэродромная техника» - Авиация для «чайников» 19

21 12. Горбунов Ал. Аэродинамика для "чайников"/ Горбунов Ал., г Дорога в облаках/ жур. Планета июль, 2013г Вехи авиации: прототип самолета с дельтовидным крылом 20

22 Приложение 1. Схема воздействия сил на самолетик в полете. Подъемная сила Ускорение, заданное при запуске Сила тяжести Лобовое сопротивление Приложение 2. Лобовое сопротивление. Поток и форма препятствия Сопротивление формы Сопротивление вязкого трения 0 % 100 % ~10 % ~90 % ~90 % ~10 % 100 % 0 % 21

23 Приложение 3. Удлинение крыла. Приложение 4. Стреловидность крыла. 22

24 Приложение 5. Средней аэродинамической хордой крыла (САХ). Приложение 6. Форма крыла. В поперечном разрезе В плане 23

25 Приложение 7. Циркуляция воздуха вокруг крыла У острого края профиля крыла образуется вихрь При образовании вихря возникает циркуляция воздуха вокруг крыла Вихрь унесен потоком, а линии тока плавно обтекают профиль; они сгущены над крылом Приложение 8. Угол запуска самолетика 24

26 Приложение 9. Модели самолетиков для эксперимента Модель из бумаги п/п 1 Название п/п 6 Модель из бумаги Название Крылан Традиционный 2 7 Хвостик Пикировщик 3 8 Охотник Разведчик 4 9 Планер Гиннесса Белый лебедь 5 10 Жук Стелс 26


Государственной общеобразовательное учреждение «Школа 37» дошкольное отделение 2 Проект «Первым делом самолеты» Воспитатели: Анохина Елена александровна Оноприенко Екатерина Элитовна Цель: Найти схему

87 Подъемная сила крыла самолета Эффект Магнуса При поступательном движении тела в вязкой среде, как было показано в предыдущем параграфе, подъемная сила возникает в том случае, если тело расположено асимметрично

ЗАВИСИМОСТЬ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК КРЫЛЬЕВ ПРОСТОЙ ФОРМЫ В ПЛАНЕ ОТ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ Спиридонов А.Н., Мельников А.А., Тимаков Е.В., Миназова А.А., Ковалева Я.И. Оренбургский государственный

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ДОШКОЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ Г.НЯГАНЬ «ДЕТСКИЙ САД 1 «СОЛНЫШКО» ОБЩЕРАЗВИВАЮЩЕГО ВИДА С ПРИОРИТЕТНЫМ ОСУЩЕСТВЛЕНИЕМ ДЕЯТЕЛЬНОСТИ ПО СОЦИАЛЬНО-ЛИЧНОСТНОМУ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» В.А.

Лекция 3 Тема 1.2: АЭРОДИНАМИКА КРЫЛА План лекции: 1. Полная аэродинамическая сила. 2. Центр давления профиля крыла. 3. Момент тангажа профиля крыла. 4. Фокус профиля крыла. 5. Формула Жуковского. 6. Обтекание

ВЛИЯНИЕ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК АТМОСФЕРЫ НА ЭКСПЛУАТАЦИЮ ВОЗДУШНЫХ СУДОВ Влияние физических характеристик атмосферы на полет Установившееся горизонтальное движение самолета Взлет Посадка Атмосферные

АНИРОВАНИЕ САМОЛЕТА Прямолинейное и равномерное движение самолета по наклонной вниз траектории называется планированием или установившимся снижением Угол, образованный траекторией планирования и линией

Тема 2: АЭРОДИНАМИЧЕСКИЕ СИЛЫ. 2.1. ГЕОМЕТРИЧЕСКИЕ ПАРАМЕТРЫ КРЫЛА С МАХ Средняя линия Основные геометрические параметры, профиль крыла и набор профилей по размаху, форма и размеры крыла в плане, геометрическая

6 ОБТЕКАНИЕ ТЕЛ В ЖИДКОСТЯХ И ГАЗАХ 6.1 Сила лобового сопротивления Вопросы обтекания тел движущимися потоками жидкости или газа чрезвычайно широко поставлены в практической деятельности человека. Особенно

Управление образования администрации Озерского городского округа Челябинской области Муниципальное бюджетное учреждение дополнительного образования «Станция юных техников» Запуск и регулировка бумажных

Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Иркутский авиационный техникум» (ГБПОУИО «ИАТ») Комплект методических

УДК 533.64 О. Л. Лемко, И. В. Король МЕТОДИКА ПАРАМЕТРИЧЕСКИХ ИССЛЕДОВАНИЙ РАСЧЕТНОЙ МОДЕЛИ ПЕРВОГО ПРИБЛИЖЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С АЭРОСТАТИЧЕСКОЙ ПОДДЕРЖКОЙ Вступление На фоне ухудшения экологического

Лекция 1 Движение вязкой жидкости. Формула Пуазейля. Ламинарное и турбулентное течения, число Рейнольдса. Движение тел в жидкостях и газах. Подъемная сила крыла самолета, формула Жуковского. Л-1: 8.6-8.7;

Тема 3. Особенности аэродинамики воздушных винтов Воздушный винт представляет собой лопастный движитель, приводимый во вращение двигателем, и предназначен для получения тяги. Он применяется на самолетах

Самарский государственный аэрокосмический университет ИССЛЕДОВАНИЕ ПОЛЯРЫ САМОЛЕТА ПРИ ВЕСОВЫХ ИСПЫТАНИЯХ В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ Т -3 СГАУ 2003 Самарский государственный аэрокосмический университет В.

Краевой конкурс творческих работ учащихся «Прикладные и фундаментальные вопросы математики» Математическое моделирование Математическое моделирование полета самолѐта Лоевец Дмитрий, Тельканов Михаил 11

ПОДЪЕМ САМОЛЕТА Подъем является одним из видов установившегося движения самолета, при котором самолет набирает высоту по траектории, составляющей с линией горизонта некоторый угол. Установившийся подъем

Тесты по теоретической механике 1: Какое или какие из нижеприведенных утверждений не справедливы? I. Система отсчета включает в себя тело отсчета и связанную с ним систему координат и выбранный способ

Управление образования администрации Озерского городского округа Челябинской области Муниципальное бюджетное учреждение дополнительного образования «Станция юных техников» Летающие модели из бумаги (Методическое

36 М е х а н і к а г і р о с к о п і ч н и й с и с т е м УДК 533.64 О. Л. Лемко, И. В. Король МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АЭРОДИНАМИЧЕСКИХ И АЭРОСТАТИЧЕСКИХ ХАРАКТЕРИСТИК ЛЕТАТЕЛЬНОГО АППАРАТА СХЕМЫ «ЛЕТАЮЩЕЕ

ГЛАВА II АЭРОДИНАМИКА I. Аэродинамика аэростата Каждое тело, движущееся в воздухе, или неподвижное тело, на которое набегает воздушный поток, испы-. тывает со стороны воздуха или воздушного потока давление

Занятие 3.1. АЭРОДИНАМИЧЕСКИЕ СИЛЫ И МОМЕНТЫ В данной главе рассмотрено результирующее силовое воздействие атмосферной среды на движущийся в ней летательный аппарат. Введены понятия аэродинамической силы,

Электронный журнал «Труды МАИ». Выпуск 72 www.mai.ru/science/trudy/ УДК 629.734/.735 Метод расчета аэродинамических коэффициентов летательных аппаратов с крыльями в схеме «икс», имеющими малый размах Бураго

У Ч Е Н bj Е 3 А П И с НИ Ц А r и Том V/ 1975.мб удк 622.24.051.52 ЭКСПЕРИМЕНТ АЛЬ НОЕ ИССЛЕДОВАНИЕ ОПТИМАЛЬНЫХ С УЧЕТОМ БАЛАНСИРОВКИ ТРЕУГОЛЬНЫХ КРЫЛЬЕВ В ВЯЗКОМ ГИПЕРЗВУКОВОМ ПОТОКЕ с. г. Крюкова, В.

108 М е х а н і к а г і р о с к о п і ч н и й с и с т е м УДК 629.735.33 А. Кара, И. С. Кривохатько, В. В. Сухов ОЦЕНКА ЭФФЕКТИВНОСТИ УПРАВЛЯЕМОЙ КОНЦЕВОЙ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ КРЫЛА Введение В

32 УДК 629.735.33 Д.В. Тиняков ВЛИЯНИЕ КОМПОНОВОЧНЫХ ОГРАНИЧЕНИЙ НА ЧАСТНЫЕ КРИТЕРИИ ЭФФЕКТИВНОСТИ ТРАПЕЦИЕВИДНЫХ КРЫЛЬЕВ САМОЛЕТОВ ТРАНСПОРТНОЙ КАТЕГОРИИ Введение В теории и практике формирования геометрических

Тема 4. Силы в природе 1. Многообразие сил в природе Не смотря на кажущееся разнообразие взаимодействий и сил в окружающем мире, существует всего ЧЕТЫРЕ типа сил: 1 тип - ГРАВИТАЦИОННЫЕ силы (иначе - силы

ТЕОРИЯ ПАРУСА Теория паруса часть гидромеханики науки о движении жидкости. Газ (воздух) на дозвуковой скорости ведет себя точно так же, как жидкость, поэтому все, что говорится здесь о жидкости, в равной

КАК СЛОЖИТЬ САМОЛЕТ П режде всего стоит обратиться к символам складывания, приведенным в конце книги они будут использоваться в пошаговых инструкциях для всех моделей. Существует также несколь ко универсальных

Ришельевский лицей Кафедра физики ДВИЖЕНИЕ ТЕЛА ПОД ДЕЙСТВИЕМ СИЛЫ ТЯЖЕСТИ Приложение к компьютерной моделирующей программе FALL ТЕОРЕТИЧЕСКАЯ ЧАСТЬ Постановка задачи Требуется решить основную задачу механики

ТРУДЫ МФТИ. 2014. Том 6, 1 А. М. Гайфуллин и др. 101 УДК 532.527 А. М. Гайфуллин 1,2, Г. Г. Судаков 1, А. В. Воеводин 1, В. Г. Судаков 1,2, Ю. Н. Свириденко 1,2, А. С. Петров 1 1 Центральный аэрогидродинамический

Тема 4. Уравнения движения самолета 1 Основные положения. Системы координат 1.1 Положение самолета Под положением самолета понимается положение его центра масс О. Положение центра масс самолета принято

9 УДК 69. 735. 33.018.7.015.3 О.Л. Лемко, д-р техн. наук, В.В. Сухов, д-р техн. наук МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ФОРМИРОВАНИЯ АЭРОДИНАМИЧЕСКОГО ОБЛИКА ЛЕТАТЕЛЬНОГО АППАРАТА ПО КРИТЕРИЮ МАКСИМАЛЬНОГО АЭРОДИНАМИЧЕСКОГО

ДИДАКТИЧЕСКАЯ ЕДИНИЦА 1: МЕХАНИКА Задание 1 Планета массой m движется по эллиптической орбите, в одном из фокусов которой находится звезда массой М. Если r радиус-вектор планеты, то справедливым является

Занятие. Ускорение. Равноускоренное движение Вариант 1.1.1. Какая из нижеперечисленных ситуаций невозможна: 1. Тело в некоторый момент времени имеет скорость, направленную на север, а ускорение, направленное

9.3. Колебания систем под действием упругих и квазиупругих сил Пружинным маятником называют колебательную систему, которая состоит из тела массой m, подвешенного на пружине жесткостью k (рис. 9.5). Рассмотрим

Дистанционная подготовка Abituru ФИЗИКА Статья Кинематика Теоретический материал В этой статье мы рассмотрим задачи на составление уравнений движения материальной точки в плоскости Пусть задана декартовая

Тестовые задания по учебной дисциплине «Техническая механика» ТЗ Формулировка и содержание ТЗ 1 Выбрать правильные ответы. Теоретическая механика состоит из разделов: а) статика б) кинематика в) динамика

Республиканская олимпиада. 9 класс. Брест. 004 г. Условия задач. Теоретический тур. Задание 1. «Автокран» Автокран массы M = 15 т с габаритами кузова = 3,0 м 6,0 м имеет легкую выдвижную телескопическую

АЭРОДИНАМИЧЕСКИЕ СИЛЫ ОБТЕКАНИЕ ТЕЛ ВОЗДУШНЫМ ПОТОКОМ При обтекании твердого тела воздушный поток подвергается деформации, что приводит к изменению скорости, давления, температуры и плотности в струйках

Региональный этап Всероссийской олимпиады профессионального мастерства обучающихся по специальности Время выполнения 40 мин. Оценивается в 20 баллов 24.02.01 Производство летательных аппаратов Теоретическое

Физика. класс. Вариант - Критерии оценивания заданий с развёрнутым ответом C Летом в ясную погоду над полями и лесами к середине дня часто образуются кучевые облака, нижняя кромка которых находится на

ДИНАМИКА Вариант 1 1. Автомобиль движется равномерно и прямолинейно со скоростью v (рис. 1). Какое направление имеет равнодействующая всех сил, приложенных к автомобилю? А. 1. Б. 2. В. 3. Г. 4. Д. F =

РАСЧЕТНЫЕ ИССЛЕДОВАНИЯ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ТЕМАТИЧЕСКОЙ МОДЕЛИ ЛА СХЕМЫ «ЛЕТАЮЩЕЕ КРЫЛО» С ПОМОЩЬЮ ПРОГРАММНОГО КОМПЛЕКСА FLOWVISION С.В. Калашников 1, А.А. Кривощапов 1, А.Л. Митин 1, Н.В.

Законы Ньютона ФИЗИКА СИЛЫ ЗАКОНЫ НЬЮТОНА Глава 1: Первый закон Ньютона Что описывают законы Ньютона? Три закона Ньютона описывают движение тел при воздействии на них силы. Законы впервые были сформулированы

ГЛАВA III ПОДЪЕМНО-ЭКСПЛОАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ АЭРОСТАТА 1. Балансировка Результирующая всех сил, приложенных к аэростату, меняет свою величину и направление при изменении скорости ветра (рис. 27).

Кузьмичев Сергей Дмитриевич 2 СОДЕРЖАНИЕ ЛЕКЦИИ 10 Элементы теории упругости и гидродинамики. 1. Деформации. Закон Гука. 2. Модуль Юнга. Коэффициент Пуассона. Модули всестороннего сжатия и одностороннего

Кинематика Криволинейное движение. Равномерное движение по окружности. Простейшей моделью криволинейного движения является равномерное движение по окружности. В этом случае точка движется по окружности

Динамика. Сила - векторная физическая величина, являющаяся мерой физического воздействия на тело со стороны других тел. 1) Только действие не скомпенсированной силы (когда сил больше одной, то равнодействующей

1. Изготовление лопастей Часть 3. Ветроколесо Лопасти описываемого ветрогенератора имеют простой аэродинамический профиль, после изготовления выглядят (и работают) как крылья самолета. Форма лопасти -

УПРАВЛЯЕМОСТЬ СУДНА ТЕРМИНЫ, СВЯЗАННЫЕ С УПРАВЛЯЕМОСТЬЮ Маневрирование изменение направления движения и скорости судна под действием руля, движителей и других устройств (для безопасного расхождения, при

Лекция 4 Тема: Динамика материальной точки. Законы Ньютона. Динамика материальной точки. Законы Ньютона. Инерциальные системы отсчета. Принцип относительности Галилея. Силы в механике. Сила упругости (закон

Электронный журнал «Труды МАИ» Выпуск 55 wwwrusenetrud УДК 69735335 Соотношения для вращательных производных от коэффициентов моментов крена и рысканья крыла МА Головкин Аннотация С использованием векторных

Тренировочные задания на тему «ДИНАМИКА» 1(А) Самолет летит прямолинейно с постоянной скоростью на высоте 9000 м. Систему отсчета, связанную с Землей, считать инерциальной. В этом случае 1) на самолет

Лекция 4 Природа некоторых сил (cила упругости, cила трения, cила тяготения, сила инерции) Сила упругости Возникает в деформированном теле, направлена в сторону противоположную деформации Виды деформации

ТРУДЫ МФТИ. 2014. Том 6, 2 Хонг Фонг Нгуен, В. И. Бирюк 133 УДК 629.7.023.4 Хонг Фонг Нгуен 1, В. И. Бирюк 1,2 1 Московский физико-технический институт (государственный университет) 2 Центральный аэрогидродинамический

Муниципальное бюджетное образовательное учреждение дополнительного образования детей Центр детского творчества «Меридиан» г.о. Самара Методическое пособие Обучение пилотированию кордовых пилотажных моделей.

ШТОПОР САМОЛЕТА Штопором самолета называется неуправляемое движение самолета по спиральной траектории малого радиуса на закритических углах атаки. В штопор может войти любой самолет, как по желанию летчика,

Е С Т Е С Т В О З Н А Н И Е. Ф И З И К А. Законы сохранения в механике. Импульс тела Импульс тела это векторная физическая величина, равная произведению массы тела на его скорость: Обозначение p, единицы

Лекция 08 Общий случай сложного сопротивления Косой изгиб Изгиб с растяжением или сжатием Изгиб с кручением Методики определения напряжений и деформаций, использованные при решении частных задач чистого

Динамика 1. Четыре одинаковых кирпича массой 3 кг каждый сложены в стопку (см. рисунок). На сколько увеличится сила действующая со стороны горизонтальной опоры на 1-й кирпич, если сверху положить ещё один

Управление образования администрации Московского района города Нижнего Новгорода МБОУ лицей 87 им. Л.И. Новиковой Исследовательская работа «Почему самолеты взлетают» Проект испытательного стенда для изучения

И. В. Яковлев Материалы по физике MathUs.ru Энергия Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии. Мы приступаем к изучению

Глава 5. Упругие деформации Лабораторная работа 5. ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Цель работы Определение модуля Юнга материала равнопрочной балки и радиуса кривизны изгиба из измерений стрелы

Тема 1. Основные уравнения аэродинамики Воздух рассматривается как совершенный газ (реальный газ, молекулы, которого взаимодействуют только при соударениях) удовлетворяющий уравнению состояния (Менделеева

88 Аэрогидромеханика ТРУДЫ МФТИ. 2013. Том 5, 2 УДК 533.6.011.35 Ву Тхань Чунг 1, В. В. Вышинский 1,2 1 Московский физико-технический институт (государственный университет) 2 Центральный аэрогидродинамический

Как сделать бумажный самолетик - 13 моделей бумажных самолетов своими руками

Подробные схемы для изготовления разнообразных бумажных самолетов: от самых простых "школьных" самолетиков до технически модифицированных моделей.

Стандартная модель

Модель "Планер"

Модель "Усовершенствованный планер"

Модель "Скат"

Модель "Канары"

Модель "Дельта"

Модель "Шаттл"

Модель "Невидимка"

Модель "Таран"

Модель "Ястребиный глаз"

Модель "Башня"

Модель "Игла"

Модель "Коршун"

Интересные факты

В 1989 году Энди Чиплинг основал Ассоциацию Бумажного Авиастроения, а в 2006 году был проведён первый чемпионат по запуску бумажных самолетов. Соревнования проводятся в трёх дисциплинах: самая длинная дистанция, самое долгое планирование и аэробатика.

Многочисленные попытки увеличить время пребывания бумажного самолётика в воздухе время от времени приводят к взятию очередных барьеров в этом виде спорта. Кен Блэкберн (Ken Blackburn) удерживал мировой рекорд на протяжении 13 лет (1983—1996) и вновь получил его 8 октября 1998 года, бросив бумажный самолёт в помещении так, что он продержался в воздухе 27,6 секунды. Этот результат подтверждён представителями Книги рекордов Гиннесса и репортёрами CNN. Бумажный самолётик, использованный Блэкберном, можно отнести к категории планеров.

Научная историко-исследовательская работа
Выполнила:ученица 11 класса Зарипова Рузиля
Научный руководитель:Сарбаева А.А.
МБОУ СОШ с.Красная Горка

Введение

Даже самая простая модель самолета - это самолет в миниатюре со всеми его свойствами. Многие известные авиаконструкторы начинали с увлечения авиамоделизмом. Чтобы построить хорошую летающую модель, нужно немало потрудиться. Все люди когда-нибудь делали бумажные самолетики и запускали их в полет. Бумажные самолетики получают популярность во всем мире. Это привело к введению нового термина аэрогами. Аэрогами – современное название изготовления и запуска бумажных моделей самолетов, одно из направлений оригами (японского искусства складывания бумаги).
Актуальность этой работы обусловлена возможностью использовать полученные знания для проведения уроков в начальных классах с целью вызвать интерес у учащихся к миру авиации и выработать необходимые качества и умения использовать творческий опыт и знания в изучении и развитии авиации.
Практическая значимость определяется возможностью провести мастер-класс по складыванию бумажных самолетиков разных моделей у учителей начальных классов, а также возможностью провести соревнования среди учащихся.
Объектом исследования являются бумажные модели самолетов.
Предметом исследования является возникновение и развитие аэрогами.
Гипотезы исследования:
1) бумажные модели самолетов являются не только забавной игрушкой, а чем-то, более важным для мирового сообщества и технического развития нашей цивилизации;
2) если при моделировании изменять форму крыла и носа бумажного самолетика, то может измениться дальность и продолжительность его полета;
3) наилучших скоростных характеристик и устойчивости полёта достигают самолеты с острым носом и узкими длинными крыльями, а увеличение размаха крыльев позволяет существенно увеличить время полёта планера.
Цель исследования: проследить историю развития аэрогами, узнать какое влияние оказывает это увлечение на общество, какую помощь оказывает бумажная авиация в технической деятельности инженеров.
В соответствии с поставленной целью нами были сформулированы следующие задачи :
  • Изучить информацию по данной проблеме;
  • Ознакомиться с различными моделями бумажных самолетов и научиться их выполнять;
  • Изучить дальность и время полета разных моделей бумажных самолетов.

Аэрогами – бумажная авиация

Аэрогами берет свое начало из всемирно известного оригами. Ведь основные приемы, техника, философия идут от него. Датой создания бумажных самолётиков следует признать 1909 год. Тем не менее, наиболее распространённая версия времени изобретения и имени изобретателя - 1930 год, Джек Нортроп -основатель компании Lockheed Corporation. Нортроп использовал бумажные самолётики для тестирования новых идей при конструкции реальных самолётов. Он сконцентрировался на разработке «летающих крыльев», которые он считал следующим этапом развития авиации. В наши дни бумажная авиация, или аэрогами, получила мировую известность. Каждый человек знает, как сложить элементарный самолетик и запустить его. Но на сегодняшний день это уже не просто забава для одного или двух человек, а серьезное увлечение, по которому проводятся соревнования по всему миру. Red Bull Paper Wings – пожалуй, самое грандиозное соревнование «бумажных авиаторов» в мире. Чемпионат дебютировал в Австрии в мае 2006 года, приняли участие спортсмены из 48 стран. Количество участников отборочных туров, проводящихся по всему миру, превысило 9500 человек. Участники традиционно соревнуются в трех категориях: «Дальность полета», «Длительность полета» и «Аэробатика».

Кен Блэкберн – мировой рекордсмен по запуску самолетиков

Имя Кена Блэкберна известно всем фанатам бумажной авиации и это неудивительно, ведь он создал модели, которые били рекорды по дальности и времени полета, рассказал о том, что маленький самолетик – это точная копия большого и что на нее действуют те же законы аэродинамики, что и на настоящие. Мировой рекордсмен Кен Блэкберн впервые познакомился с конструкцией квадратных бумажных самолетиков в возрасте всего 8 лет во время посещения любимой авиационной секции. Он заметил, что самолеты с большим размахом крыла летают лучше и выше обычных самолетов-дротиков. К неудовольствию школьных учителей, юный Кен экспериментировал с конструкцией самолетиков, посвящая этому массу времени. В 1977 году он получил в подарок Книгу рекордов Гиннесса и твердо решил побить действующий 15-секундный рекорд: его самолеты иногда находились в воздухе больше минуты. Путь к рекорду не был легким.
Блэкберн изучая авиацию в университете Северной Каролины, пытался достичь поставленной цели. К тому времени он понял, что результат зависит больше от силы броска, чем от конструкции самолета. Несколько попыток вывели его результат на уровень 18,8 с. К тому времени Кену уже стукнуло 30. В январе 1998-го Блэкберн открыл Книгу рекордов и обнаружил, что был сброшен с пьедестала парой британцев, показавших результат 20,9 с.
Такого Кен допустить не мог. На этот раз в подготовке авиатора к рекорду участвовал настоящий спортивный тренер. Кроме того, Кен испытал множество конструкций самолетов и выбрал лучшие из них. Результат последней попытки оказался феноменальным: 27,6 с! На этом Кен Блэкберн решил остановиться. Даже если его рекорд будет побит, что рано или поздно должно случиться, свое место в истории он заработал.

Какие силы действуют на бумажный самолет

Почему же летают аппараты тяжелее воздуха - самолеты и их модели? Вспомните, как ветер гонит листья и бумажки вдоль улицы, поднимает их вверх. Летящую модель можно сравнить с предметом, гонимым потоком воздуха. Только воздух здесь неподвижен, а модель мчится, рассекая его. При этом воздух не только тормозит полет, но при определенных условиях создает подъемную силу. Посмотрите на рисунок 1(приложение). Здесь показано сечение крыла самолета. Если крыло будет расположено так, чтобы между его нижней плоскостью и направлением движения самолета был некоторый угол a (называемый углом атаки), то, как показывает практика, скорость потока воздуха, обтекающего крыло сверху, будет больше, чем его скорость снизу крыла. А по законам физики в том месте потока, где скорость больше, давление меньше, и наоборот. Вот почему при достаточно быстром движении самолета давление воздуха под крылом будет больше, чем над крылом. Эта разность давлений поддерживает самолет в воздухе и называется подъемной силой.
На рисунке 2(Приложение) показаны силы, действующие на самолет или модель в полете. Суммарное действие воздуха на летательный аппарат представляют в виде аэродинамической силы R. Эта сила является результирующей силой, действующей на отдельные части модели: крыло, фюзеляж, оперение и т. д. Направлена она всегда под углом к направлению движения. В аэродинамике действие этой силы принято заменять действием двух ее составляющих - подъемной силы и силы сопротивления.
Подъемная сила Y всегда направлена перпендикулярно направлению движения, сила сопротивления X - против движения. Сила тяжести G всегда направлена вертикально вниз. Подъемная сила зависит от площади крыла, скорости полета, плотности воздуха, угла атаки и аэродинамического совершенства профиля крыла. Сила сопротивления зависит от геометрических размеров поперечного сечения фюзеляжа, скорости полета, плотности воздуха и качества обработки поверхностей. При прочих равных условиях дальше летит та модель, у которой поверхность отделана более тщательно. Дальность полета определяется аэродинамическим качеством К, равным отношению подъемной силы к силе сопротивления, то есть аэродинамическое качество показывает, во сколько раз подъемная сила крыла больше силы сопротивления модели. В планирующем полете подъемная сила модели Y обычно равна весу модели, а сила сопротивления X в 10-15 раз меньше, поэтому дальность полета L будет в 10-15 раз больше высоты Н, с которой начался планирующий полет. Следовательно, чем легче модель, чем она тщательнее изготовлена, тем большей дальности полета можно достигнуть.

Экспериментальное исследование моделей бумажных самолетов в полете

Организация и методы исследования

Исследование проводилось в МБОУ СОШ с.Красная Горка.

В исследовании мы ставили перед собой следующие задачи :

  • Ознакомиться с инструкциями различных моделей бумажных самолетов. Узнать какие сложности возникают при сборке моделей.
  • Провести эксперимент, направленный на исследование бумажных самолетов в полете. Все ли модели одинаково послушны при запуске, какое время они проводит в воздухе и какова дальность их полета.
Комплекс методов и методик , которые мы использовали для проведения исследования:
  • Моделирование множества моделей бумажных самолетов;
  • Моделирование экспериментов по запуску моделей бумажных самолетов.
При проведении эксперимента мы наметили следующую последовательность действий :
1.Выбрать заинтересовавшие нас виды самолетов. Изготовить модели бумажных самолетов. Провести испытания самолетов в полете, с целью определения их летных качеств (дальности и точности в полете, времени в полете), способа запуска и простоты исполнения. Данные занести в таблицу. Выбрать модели, показавшие лучшие результаты.
2.Три из лучших моделей выполнить из различных сортов бумаги. Провести испытания, данные занести в таблицу. Сделать вывод, какая бумага лучше всего подходит для выполнения моделей бумажных самолетов.
Формы записей результатов исследования - данные эксперимента фиксировать в таблицах.
Первичная обработка и анализ и результатов исследования осуществлялась следующим образом:
  • Внесение полученных результатов эксперимента в соответствующие формы записей;
  • Схематическое,графическое, иллюстративное представление результатов(подготовка презентации).
  • Написание выводов.

Описание, анализ результатов исследования и выводы о зависимости длительности полета бумажного самолетика от модели и способа запуска

Эксперимент 1Цель: собрать информацию о моделях бумажных самолетов; проверить, насколько сложно собирать модели разных видов; проверить сделанные модели в полете.
Оборудование: офисная бумага, схемы сборки бумажных моделей самолетов, рулетка, секундомер, бланки для фиксирования результатов.
Место проведения: коридор школы.
После изучения большого количества инструкций моделей бумажных самолетов, мы выбрали пять, понравившихся мне моделей. Детально изучив инструкции к ним, мы выполнили эти модели из офисной бумаги формата А4. После выполнения этих моделей, мы провели их испытание в полете. Данные этих испытаний мы занесли в таблицу.

Таблица 1


Название модели бумажного самолета
Рисунок модели
Сложность сборки модели(от 1 до 10 баллов)
Дальность полета,м
(наиб.)
Время полета, с
(наиб.)
Особенности при запуске
1
Основной дротик(Basic Dart)

3
6
0,93
Закручивается
2


4
8,6
1,55
Летит по прямой
3
Истребитель(Harrier Paper Airplane)

5
4
3
Плохо управляем
4
Сокол Ф-16(F-16 Falcon Paper Airplane)

7
7,5
1,62
Плохо планирует
5
Космический Шаттл(Space Shuttle Paper Airplane)

8
2,40
0,41
Плохо планирует

На основе данных этих испытаний мы сделали следующие выводы :
  • Собирать модели не так просто, как можно было подумать. При сборке моделей очень важно симметрично выполнять сгибы, это требует определенной сноровки и навыков.
  • Все модели можно разделить на два вида: модели, пригодные для запуска на дальность полета, и модели, которые хорошо себя показывают при запуске на длительность полета.
  • Лучше всех вела себя при запуске на дальность полета модель №2 Сверхзвуковой истребитель (Delta Fighter).
Эксперимент 2

Цель: сравнить, модели из какой бумаги показывают лучшие результаты по дальности полета, по времени полета.
Материалы: офисная бумага, тетрадные листы, газетная бумага, рулетка, секундомер, бланки для фиксирования результатов.
Место проведения : коридор школы.
Три лучшие модели мы выполнили из различных сортов бумаги. Провели испытания, данные занесли в таблицу. Сделали вывод, какую бумагу лучше всего использовать для выполнения моделей бумажных самолетов.

Таблица 2


Сверхзвуковой истребитель(Delta Fighter)
Дальность полета,м
(наиб.)
Время полета,с
(наиб.)
Дополнительные замечания
1
Офисная бумага
8,6
1,55
Большая дальность полета
2
Газетная бумага
5,30
1,13

3
Тетрадный лист бумаги
2,6
2,64
Из бумаги в клеточку выполнять модель проще и быстрее;очень большое время полета

Таблица 3

Сокол Ф-16(F-16 Falcon Paper Airplane)Дальность полета,м
(наиб.)
Время полета,с
(наиб.)
Дополнительные замечания
1
Офисная бумага
7,5
1,62
Большая дальность полета
2
Газетная бумага
6,3
2,00
Плавный полет, хорошо планирует
3
Тетрадный лист бумаги
7,1
1,43
Из бумаги в клеточку выполнять модель проще и быстрее

Таблица 4

Основной дротик(Basic Dart)Дальность полета,м
(наиб.)
Время полета,с
(наиб.)
Дополнительные замечания
1
Офисная бумага
6
0,93
Большая дальность полета
2
Газетная бумага
5,15
1,61
Плавный полет, хорошо планирует
3
Тетрадный лист бумаги
6
1,65
Из бумаги в клеточку выполнять модель проще и быстрее;очень большое время полета

На основе данных, полученных в ходе эксперимента, мы сделали следующие выводы:
  • Из тетрадных листов в клеточку выполнять модели проще, чем из офисной или газетной бумаги, но при испытаниях они показывают не очень высокие результаты;
  • Модели, выполненные из газетной бумаги очень красиво летят;
  • Для получения высоких результатов по дальности полета больше подходят модели из офисной бумаги.
Выводы
В результате нашего исследования мы ознакомилась с различными моделями бумажных самолетов: они отличаются между собой сложностью складывания, дальностью и высотой полета, продолжительностью полета, что подтвердилось в ходе эксперимента. На полет бумажного самолета влияют различные условия: свойства бумаги, размер самолета, модель.. Проведенные эксперименты позволили выработать следующие рекомендации по сборке моделей бумажных самолетов:
  • Прежде, чем приступить к сборке модели бумажного самолета, нужно решить, какой вид модели нужен: для длительности или дальности полета?
  • Чтобы модель хорошо летала, сгибы нужно выполнять ровно, точно следовать размерам, указанным в схеме сборки,следить за тем, чтобы все сгибы выполнялись симметрично.
  • Очень важно, каким образом загнуты крылья, от этого зависит длительность и дальность полета.
  • Складывание бумажных моделей развивает абстрактное мышление человека.
  • В результате исследования мы узнали, что бумажные самолетики используются для тестирования новых идей при конструкции реальных самолётов.
Заключение
Данная работа посвящена исследованию предпосылок развития популярности бумажной авиации, значению оригами для общества, выявлению является ли бумажный самолетик точной копией большого, действуют ли на него те же законы аэродинамики, что и на настоящие самолеты.
В ходе эксперимента, выдвинутая нами гипотеза подтвердилась: наилучших скоростных характеристик и устойчивости полёта достигают самолеты с острым носом и узкими длинными крыльями, а увеличение размаха крыльев позволяет существенно увеличить время полёта планера.
Таким образом, наша гипотеза о том, что бумажные модели самолетов являются не только забавной игрушкой, а чем-то, более важным для мирового сообщества и технического развития нашей цивилизации, подтвердилась.

Список источников информации
http://www.krugosvet.ru/enc/nauka_i_tehnika/aviaciya_i_kosmonavtika/PLANER.html
http://igrushka.kz/vip95/bumavia.php http://igrushka.kz/vip91/paperavia.php
http://danieldefo.ru/forum/showthread.php?t=46575
Бумажные самолетики. – Москва // Новости космонавтики. – 2008 –735. – 13 c
Статья «Бумагия #2: Аэрогами», Принт Фан
http://printfun.ru/bum2

Приложение

Силы аэродинамики

Рис. 1. Сечение крыла самолета
Подъемная сила -Y
Сила сопротивления X
Сила тяжести - G
Угол атаки - a

Рис. 2. Силы, действующие на самолет или модель в полете

Творческие моменты

Делаю бумажный самолетик из офисной бумаги

Подписываю

Подготовка



Делаю бумажный самолетик из газеты



Делаю бумажный самолетик из тетрадного листка


Исследование(Слева секундомер)

Измеряю длину и записываю результаты в таблицу

Мои самолеты







2024 © styletrack.ru.