Определение эффективности стерилизации. Физический контроль режима стерилизации. Методы контроля эффективности стерилизации. Контроль качества и эффективность стерилизации


Стерилизация – удаление или уничтожение всех живых микроорганизмов (вегетативных и споровых форм) внутри или на поверхности предметов.

Стерилизация проводится различными методами: физическими, химическими, механическими.

Основные требования, предъявляемые к процессу стерилизации, отражены в отраслевом стандарте 42-21-2-82 «Стерилизация и дезинфекция изделий медицинского назначения. Методы, средства, режимы».

Качество этих продуктов контролируется независимым британским испытательным центром. Индикаторная полоска вставлена ​​в камеру испытательного корпуса. Эти тесты могут имитировать условия стерилизации приборов с полостями, эндоскопами и т.д. полоска снабжена самоклеящимся слоем на оборотной стороне. Испытательные пакеты могут использоваться для проверки производительности пара и его качества. Индикаторная полоска вставляется в камеру с одним концом капилляра указанной длины. Другой конец капилляра образует вход для пара в систему.

Физические методы. Самым распространенным методом стерилизации является воздействие высокой температуры. При температуре, приближающейся к 100 0 С, происходит гибель большинства патогенных бактерий и вирусов. Споры почвенных бактерий-термофилов погибают при кипячении в течение 8,5 часов. Микроорганизмы, попавшие в глубинные слои земли, или покрытые свернувшейся кровью, оказываются защищенными от воздействия высокой температуры и сохраняют свою жизнеспособность.

Индикаторная лента снабжена самоклеящимся слоем на оборотной стороне. На этикетках с плоскогубцами будут напечатаны следующие данные: дата стерилизации, срок годности, номер стерилизации и номер стерилизации и номер сотрудника стерилизации. Для контроля за стерилизацией длинных полых объектов, стресс-тест Брауна особенно хорошо подходит. Тестовый краситель, состоящий из белков, липидов и полисахаридов, осаждают на пластиковый носитель. Конструкция теста имитирует также промывку труднодоступных инструментов.

Соответствующие разделы этого раздела. Получение и отправка материалов в форме службы доставки в соответствии с графиком по конституционному транспорту в соответствии с запросами отдельных отделов. Машинная стирка в автоматической стиральной машине с регулируемыми и контролируемыми параметрами. Завершение инструментов инструментария в комплекты - исполняется выдающимися медсестрами. Упаковка медицинских устройств в специальные одноразовые пакеты для стерилизации. Хранение склада и обеспечение утилизации одноразовой крышки, вкл. хирургические мантии для отделений больниц. Влажное тепло, предназначенное для стерилизации металлических, пористых, полых и других термостабильных медицинских изделий ; плазму для стерилизации термолабильных медицинских устройств; формальдегид, который предназначен для стерилизации термолабильных медицинских устройств.

  • Получение и доставка требований к статистике - индивидуально.
  • Дезинфекция, механическая очистка и специальная обработка медицинских изделий.
  • Ручная предварительная чистка инструментов и посуды.
Все методы стерилизации выполняются в современных устройствах с контролируемыми параметрами, письменной записью о ходе процесса стерилизации и строгом контроле по химическим, физическим и биологическим показателям.

При стерилизации физическими методами применяют действие высоких температур , давления, ультрафиолетового облучения и др.

Проводится оператором, обслуживающим стерилизационное оборудование.

Позволяет оперативно выявить и устранить отклонения в работе стерилизационного оборудования.

Недостаток. Оценивает действие параметров внутри камеры аппарата, а не внутри стерилизуемых упаковок и поэтому должен использоваться в комплексе с другими методами контроля.

3.2.2. Химический метод.

Необходим для оперативного контроля одного или нескольких действующих параметров стерилизационного цикла.

Должен проводиться ежедневно при проведении каждого цикла стерилизации.

Проводится с использованием химических индикаторов (см. Классификацию химических индикаторов).

Принцип действия химических индикаторов основан на изменении агрегатного состояния индикаторного вещества или (и) цвета индикаторной краски при действии определенных параметров стерилизации, строго специфичных для каждого типа индикаторов, в зависимости от метода и режима стерилизации.


Классификация химических индикаторов


A. По принципу размещения индикаторов на стерилизуемых объектах различают два типа химических индикаторов: наружные и внутренние:

Наружные индикаторы (ленты, наклейки) крепятся липким слоем на поверхности используемых упаковок (бумага, металл, стекло и т.д.) и удаляются впоследствии. Наружным индикатором могут являться также некоторые упаковочные материалы (например, бумажно-пластиковые мешки, рулоны), содержащие химический индикатор на своей поверхности.

Внутренние индикаторы размещаются внутри упаковки со стерилизуемыми материалами вне зависимости от ее вида (бумажный или пластиковый пакет, металлический контейнер и др.). К ним относятся различные виды бумажных индикаторных полосок, содержащие на своей поверхности индикаторную краску.

B. В зависимости от количества контролируемых параметров стерилизационного цикла различают несколько классов химических индикаторов.

Чем выше класс индикатора, тем больше параметров стерилизационного цикла он контролирует и тем выше вероятность получения стерильных материалов при его использовании.


Класс 1. Индикаторы процесса стерилизации


Наружные индикаторы, предназначенные для использования на индивидуальных упаковках со стерилизуемыми материалами. Результаты расшифровки позволяют сделать, заключение о том, что данная упаковка с инструментом (материалом) прошла стерилизационную обработку выбранным методом и таким образом отличить ее от необработанной.


Класс 2. Индикаторы одной переменной


Предназначены для оперативного контроля действия одного из действующих факторов стерилизации (например, достижение определенной температуры, концентрация активно действующего вещества в химическом растворе , концентрации газа и т.д.).


Класс 3. Мультипараметрические индикаторы


Предназначены для оценки действия двух и более факторов стерилизационного цикла.

Нанесенная на их поверхность индикаторная краска изменяет свой цвет только при одновременном действии нескольких параметров (например, температуры и экспозиции при воздушной стерилизации; температуры, экспозиции и насыщенного пара при паровом методе стерилизации, концентрации газа и относительной влажности при газовом методе и т.д.).


Класс 4. Интеграторы


Химические индикаторы, которые являются аналогом биологических.

Разработаны для использования в любых режимах парового или газового методов стерилизации.

Контролируют одновременное действие всех параметров выбранного метода стерилизации.

Принцип действия интеграторов основан на том, что скорость плавления химического вещества , содержащегося в нем, идентична скорости гибели споровых форм бактерий, являющихся тестовыми и используемых в традиционных биологических индикаторах.

Преимущество. Расшифровка результатов проводится непосредственно после окончания цикла стерилизации и позволяет сделать заключение о стерильности (нестерильности) материалов.

3.2.2.1. Все виды химических индикаторов должны применяться в соответствии с Инструкциями по применению, утвержденными Министерством здравоохранения Республики Беларусь.

3.2.2.2. Размещение химических индикаторов на стерилизуемых объектах для контроля качества стерилизационного процесса представлено в таблице 2.


Таблица 2


Размещение химических индикаторов на стерилизуемых объектах в зависимости от метода стерилизации


┌───────────────────────┬───────────────────────┬──────────────────┐ │ Метод стерилизации │ Наружный индикатор │ Внутренний │ │ │ │ индикатор │ ├───────────────────────┼───────────────────────┼──────────────────┤ │Паровой (все режимы) │Одна этикетка или │Одна индикаторная │ │ │отрезок индикаторной │полоска внутри │ │ │ленты длиной 6 - 7 см │каждой упаковки. │ │ │на каждую упаковку или │При использовании │ │ │использование │металлических │ │ │упаковочного материала │контейнеров - в │ │ │с нанесенным │центре или на дне │ │ │индикатором │каждого │ ├──────────┬────────────┼───────────────────────┼──────────────────┤ │Воздушный │Открытый │Не используется при │1 индикаторная │ │ │ │стерилизации │полоска в центре │ │ │ │металлических │каждого контейнера│ │ │ │инструментов в открытых│ │ │ │ │контейнерах │ │ │ ├────────────┼───────────────────────┼──────────────────┤ │ │Закрытый │Одна этикетка или │Одна индикаторная │ │ │ │отрезок индикаторной │полоска внутри │ │ │ │ленты на каждую │каждой упаковки │ │ │ │упаковку │ │ ├──────────┼────────────┼───────────────────────┼──────────────────┤ │Газовый │Этилен- │Одна этикетка или │Одна индикаторная │ │ │оксидный │отрезок индикаторной │полоска внутри │ │ │ │ленты на каждую │каждой упаковки │ │ │ │упаковку или │ │ │ │ │использование │ │ │ │ │упаковочного │ │ │ │ │материала с нанесенным │ │ │ │ │индикатором │ │ │ ├────────────┼───────────────────────┼──────────────────┤ │ │Пароформали-│Использование │Одна индикаторная │ │ │новый │упаковочного материала │полоска внутри │ │ │ │с нанесенным │каждой упаковки │ │ │ │индикатором │ │ └──────────┴────────────┴───────────────────────┴──────────────────┘

┌──────────────────────┬───────────────────────────────────────────┐ │ Метод стерилизации │ Периодичность применения │ ├──────────────────────┼───────────────────────────────────────────┤ │Паровой (все режимы) │Еженедельно. │ │ │Обязательно после установки и наладки │ │ │оборудования, проведения любого объема │ │ │ремонтных работ , при стерилизации │ │ │имплантируемых материалов, при получении │ │ │неудовлетворительных результатов │ │ │химического мониторинга │ ├──────────────────────┼───────────────────────────────────────────┤ │Воздушный (все режимы)│Еженедельно. │ │ │Обязательно после установки и наладки │ │ │оборудования, проведения любого объема │ │ │ремонтных работ, при стерилизации │ │ │имплантируемых материалов, при получении │ │ │неудовлетворительных результатов │ │ │химического мониторинга │ ├───────┬──────────────┼───────────────────────────────────────────┤ │Газовый│Этилен- │При проведении каждого цикла стерилизации, │ │ │оксидный │а также обязательно после установки и │ │ │ │наладки оборудования, проведения любого │ │ │ │объема ремонтных работ │ ├───────┼──────────────┼───────────────────────────────────────────┤ │ │Пароформали- │При проведении каждого цикла стерилизации, │ │ │новый │а также обязательно после установки и │ │ │ │наладки оборудования, проведения любого │ │ │ │объема ремонтных работ │ └───────┴──────────────┴───────────────────────────────────────────┘

Примечание. Имплантируемые материалы не должны использоваться до результатов расшифровки биологических индикаторов.


4. ЭТАПЫ КОНТРОЛЯ КАЧЕСТВА СТЕРИЛИЗАЦИИ


4.1. Весь процесс контроля качества стерилизации должен проводиться обученным медицинским персоналом с использованием вышеуказанных методов в несколько этапов (см. таблицу 4).


Таблица 4


Этапы контроля качества стерилизации


┌─────────────┬─────────────────────┬─────────────┬────────────────┐ │Этап контроля│ Цель │Используемые │ Кто проводит │ │ │ │ методы │ │ │ │ │ контроля │ │ ├─────────────┼─────────────────────┼─────────────┼────────────────┤ │1. Контроль │Оценить качество │Физический │Персонал, │ │работы │работы │ │обслуживающий │ │оборудования │ │ │стерилизационное│ │ │ │ │оборудование │ ├─────────────┼─────────────────────┼─────────────┼────────────────┤ │2. Контроль │Оценить качество │Химический, │Персонал, │ │качества │стерилизации всего │биологический│обслуживающий │ │стерилизации │объема стерилизуемых │ │стерилизационное│ │всей загрузки│материалов, для чего │ │оборудование │ │ │используется тестовая│ │ │ │ │упаковка (см. раздел │ │ │ │ │5 п. 5.2) │ │ │ ├─────────────┼─────────────────────┼─────────────┼────────────────┤ │3. Контроль │Оценить достижение │Химический, │Персонал │ │качества │параметров │биологический│отделений при │ │стерилизации │стерилизации внутри │ │использовании │ │упаковки с │каждой из упаковок. │ │стерильных │ │материалами │Проводится в момент │ │материалов │ │ │вскрытия упаковки │ │ │ │ │непосредственно │ │ │ │ │перед применением │ │ │ ├─────────────┼─────────────────────┼─────────────┼────────────────┤ │4. Протоколи-│Письменно │Физический │Вышеуказанные │ │рование │подтвердить качество │ │категории │ │полученных │стерилизационного │ │персонала │ │результатов │процесса │ │ │ └─────────────┴─────────────────────┴─────────────┴────────────────┘

5.2.1.2. Тестовая упаковка должна соответствовать стерилизуемым по плотности, размерам и качеству содержимого.

5.2.1.3. Место размещения тестовой упаковки должно быть наиболее труднодоступным для стерилизующих факторов. Принцип размещения представлен в таблице 5.

5.2.1.4. Маркировка даты стерилизации проводится перед началом стерилизации.

5.2.1.5. После окончания цикла стерилизации тестовая упаковка вскрывается.

5.2.1.6. Оператор составляет протокол проведения стерилизации данной партии материала в специальной учетной форме (журнал или картотека) - см. приложение 1. Если стерилизатор содержит принтерное устройство, протоколирующее параметры стерилизационного цикла, то полученные диаграммы после окончания каждого цикла вклеиваются в журнал или помещаются в конверт.

5.3. По результатам расшифровки индикаторов, размещаемых внутри тестовой упаковки, оператор делает заключение о качестве обработки всей партии стерилизуемых объектов и возможности (невозможности) дальнейшего использования материалов.

5.4. Качество обработки каждой конкретной упаковки с материалами проводится в отделениях, применяющих стерильные материалы данной партии.

5.5. Правильность протоколирования результатов контролируется ответственным персоналом (старшая медсестра ЦСО, старшая медсестра отделения).


Таблица 5


Размещение тестовой упаковки в зависимости от метода стерилизации


┌───────────────────┬──────────────────────────────────────────────┐ │ Метод │ Место размещения тестовой упаковки │ │ стерилизации │ │ ├───────────────────┼──────────────────────────────────────────────┤ │Паровой │Возле водостока или возле передней дверцы │ │ │камеры аппарата │ ├───────────────────┼──────────────────────────────────────────────┤ │Воздушный │В центре камеры │ ├───────────────────┼──────────────────────────────────────────────┤ │Газовый │В центре камеры │ └───────────────────┴──────────────────────────────────────────────┘

6. УПАКОВКА МАТЕРИАЛОВ


6.1. Применяемые упаковочные материалы для любого метода стерилизации должны обладать следующими характеристиками:

Не влиять на качество стерилизуемых объектов.

Быть проницаемыми для стерилизующих агентов.

Обеспечивать герметичность вплоть до вскрытия упаковки.

Легко вскрываться без нарушения асептики содержимого.

6.2. Различают следующие виды упаковочного материала, которые могут применяться отдельно или в сочетании друг с другом: бумага, металл, стекло, ткань, пластмасса.

6.3. Упаковочные материалы делятся на две категории: одноразового использования (бумага, бумажно-пластиковые материалы), многоразового использования (контейнеры).

6.4. Для обеспечения длительного поддержания стерильности вне зависимости от метода стерилизации рекомендуется применять 2 слоя упаковочного материала (бумага, марля, ткань и т.д.). Бумага для упаковки выпускается двух видов - простая и крепированная. Последняя обладает повышенной прочностью , устойчива к повреждениям, лучше сохраняет форму. Упаковочный материал может выпускаться в виде отдельных листов различных размеров , в виде пакетов или рулонов различной вместимости.

6.5. Любой вид упаковочного материала должен соответствовать применяемому методу стерилизации и требованиям государственных стандартов.

6.7. При загрузке камеры парового стерилизатора различными типами упаковок (металлические контейнеры , бумажные пакеты) металлические контейнеры должны размещаться всегда под текстильными или бумажными упаковками для свободного спекания конденсата и предотвращения их намокания.

6.8. В приложениях 2 и 3 представлены стандартные схемы упаковки материалов перед стерилизацией.


Таблица 6


Максимальные сроки хранении простерилизованных изделий в зависимости от вида упаковки


┌───────────────────────────────────────────────────┬──────────────┐ │ Вид упаковки │Сроки хранения│ ├───────────────────────────────────────────────────┼──────────────┤ │Бумага, ткань и др. материалы, содержащие целлюлозу│ 3 суток │ ├───────────────────────────────────────────────────┼──────────────┤ │Бумага, ткань на основе синтетических волокон │ 2 месяца │ │(2 слоя) │ │ ├───────────────────────────────────────────────────┼──────────────┤ │Комбинированные бумажно-пластиковые материалы │ │ │ тм тм │ │ │(типа 3М Стери-Дуал): │ │ ├───────────────────────────────────────────────────┼──────────────┤ │ при термозапечатывании на аппаратах │ 6 месяцев │ ├───────────────────────────────────────────────────┼──────────────┤ │ при заклеивании индикаторной упаковочной лентой │ 3 месяца │ ├───────────────────────────────────────────────────┼──────────────┤ │Синтетические материалы в виде мешков или рулонов │ 1 - 5 лет │ │ тм тм тм │ │ │(типа 3М Стери-Лок, Танвек) при термозапеча- │ │ │тывании на аппаратах │ │ ├───────────────────────────────────────────────────┼──────────────┤ │Металлические контейнеры без фильтров │ 3 суток │ ├───────────────────────────────────────────────────┼──────────────┤ │Металлические контейнеры с фильтрами │ 21 сутки │ └───────────────────────────────────────────────────┴──────────────┘

ФОРМА ЖУРНАЛА УЧЕТА ПАРАМЕТРОВ СТЕРИЛИЗАЦИИ


┌────────┬──────┬──────┬──────┬──────┬─────────────┬──────────┬─────────┬─────────┬───────────┬───────┐ │Дата │N сте-│N за- │Время │Время │Описание │Параметры │Наружный │Внут- │Биоло- │Личная │ │ │рили- │грузки│начала│окон- │стерилизуемых│цикла (t │хими- │ренний │гический │подпись│ │ │затора│ │стери-│чания │материалов │град. C, │ческий │хими- │индикатор │ │ │ │ │ │лиза- │стери-│ │давление │индикатор│ческий │ │ │ │ │ │ │ции │лиза- │ │и т.д.) │ │индикатор│ │ │ │ │ │ │ │ции │ │ │ │ │ │ │ ├────────┼──────┼──────┼──────┼──────┼─────────────┼──────────┼─────────┼─────────┼───────────┼───────┤ │12.07.99│2 │3 │8.50 │9.35 │Перечисляются│Согласно │Место │Место │Графа │Иванова│ │ │ │ │ │ │стерилизуемые│показаниям│наклеи- │наклеи- │заполняется│ │ │ │ │ │ │ │предметы в │датчиков │вания │вания │после │ │ │ │ │ │ │ │каждой │ │ │ │получения │ │ │ │ │ │ │ │упаковке или │ │ │ │ответа из │ │ │ │ │ │ │ │указывается │ │ │ │лаборатории│ │ │ │ │ │ │ │N набора │ │ │ │ │ │ └────────┴──────┴──────┴──────┴──────┴─────────────┴──────────┴─────────┴─────────┴───────────┴───────┘ Внутри размещается химический индикатор (интегратор) из тестовой упаковки │ \/ ┌────────────────────────────────────────────────────────────────┐ │ │ │ Дата N стерилизатора N загрузки │ │ ┌───────────────────────┐ │ │ Начало цикла: ___ ч ___ мин │ Место для наклеивания │ │ │ │ наружного индикатора │ │ │ Окончание цикла: ___ ч ____ мин └───────────────────────┘ │ │ │ │ Показания датчиков: │ │ __________________________ │ │ │ │ Описание стерилизуемых материалов │ │ __________________________ │ │ │ │ Химический индикатор Отриц. / Положит. │ │ │ │ Биологический индикатор Отриц. / Положит. │ │ │ │ Подпись ________________ │ │ │ └────────────────────────────────────────────────────────────────┘

Приложение 2 (обязательное)


СТАНДАРТНАЯ СХЕМА ДВУХСЛОЙНОЙ УПАКОВКИ МАТЕРИАЛОВ ПЕРЕД СТЕРИЛИЗАЦИЕЙ


*****НА БУМАЖНОМ НОСИТЕЛЕ


Приложение 3 (обязательное)


СТАНДАРТНАЯ СХЕМА УПАКОВКИ МАТЕРИАЛОВ ПЕРЕД СТЕРИЛИЗАЦИЕЙ В ТКАНЫЕ МАТЕРИАЛЫ


*****НА БУМАЖНОМ НОСИТЕЛЕ

Введение

Контроль качества стерилизации проводится персоналом центров дезинфекции и стерилизации и дезинфекционных отделов центров гигиены и эпидемиологии, а также персоналом лечебно-профилактических учреждений.

В функции персонала центров дезинфекции и стерилизации и дезинфекционных отделов ЦГЭ входит контроль работы стерилизаторов на объектах надзора с использованием физического, химического и бактериологического методов:

после монтажа и ремонта аппаратов;

плановый контроль в порядке государственного санитарного надзора не реже 2 раз в год;

по показаниям при обнаружении неудовлетворительных результатов контроля стерильности изделий медицинского назначения.

В функции персонала лечебно-профилактических учреждений входит самоконтроль работы стерилизаторов, который проводится при каждой загрузке аппаратов. Контроль осуществляется физическим и химическим методами

Методы контроля эффективности стерилизации

В комплексе мероприятий по стерилизации изделий медицинского назначения важное значение имеет организация и проведение контроля за ее эффективностью. Используемые до настоящего времени методы и средства контроля не всегда позволяют выявить дефекты стерилизации, что влечет за собой повышение уровня внутрибольничных инфекций.

Контроль эффективности работы стерилизационного оборудования осуществляется физическими, химическими и биологическим (бактериологическим) методами. Надежность этих методов неодинакова. Физические и химические методы предназначены для оперативного контроля и позволяют контролировать соблюдение параметров режимов паровой, газовой, воздушной стерилизации, температуру, давление, экспозицию. Недостаток этих методов заключается в том, что они не могут служить доказательством эффективной стерилизации. Достоверным для определения эффективности является только бактериологический метод.

Физические методы

Физические методы контроля осуществляются с помощью средств измерения температуры (термометры, термопары), давления (манометры, мановакуумметры) и времени (таймеры). Современные стерилизаторы оснащены также записывающими устройствами, фиксирующими отдельные параметры каждого цикла стерилизации.

Химические методы

В течение десятков лет для проведения химического контроля применялись химические вещества, изменяющие свое агрегатное состояние или цвет при температуре, близкой к температуре стерилизации (бензойная кислота для контроля паровой стерилизации, сахароза, гидрохинон и ряд других веществ - для контроля воздушной стерилизации). При изменении цвета и расплавлении указанных веществ результат стерилизации признавался удовлетворительным. Однако многолетние наблюдения и данные литературы указывают, что при удовлетворительных результатах химического контроля с помощью названных индикаторов, бактериологический контроль в ряде случаев (до 12%) выявляет неудовлетворительный результат стерилизации.

Кроме того, эти вещества имеют существенный недостаток. Переход их в другое агрегатное состояние не дает представления о продолжительности воздействия температуры, при которой происходит их расплавление.

Принимая во внимание недостаточную достоверность использования указанных индикаторов для контроля, а также значительную трудоемкость и неудобство их практического применения, в 70-х годах были разработаны химические индикаторы, изменение цвета которых происходит при воздействии температуры, принятой для данного режима, в течение времени, необходимого для стерилизации. По изменению окраски этих индикаторов можно судить о том, что основные параметры процесса стерилизации - температура и время - выдержаны. Длительное применение таких индикаторов показало их высокую надежность.

Более сложные индикаторы предназначены для контроля критических параметров процесса стерилизации. Критическими параметрами являются: для парового метода стерилизации - температура, время воздействия данной температуры, водяной насыщенный пар; для воздушного метода стерилизации - температура и время воздействия данной температуры; для газовых методов стерилизации - концентрация используемого газа, температура, время воздействия, уровень относительной влажности; для радиационной стерилизации - полная поглощенная доза.

Индикаторы 1-го класса являются индикаторами ("свидетелями") процесса. Примером такого индикатора является термоиндикаторная лента, наклеиваемая перед проведением стерилизации на текстильные упаковки или стерилизационные коробки. Изменение цвета ленты указывает, что упаковка подверглась воздействию процесса стерилизации. Такие же индикаторы могут помещаться в наборы хирургических инструментов или операционного белья.

2-й класс индикаторов предназначен для использования в специальных тестовых процедурах, например, при проведении теста Бовье-Дика (Bowie-Dick test). Этот тест не контролирует параметры стерилизации, он оценивает эффективность удаления воздуха из камеры парового стерилизатора.

Индикаторы 3-го класса являются индикаторами одного параметра. Они оценивают максимальную температуру, но не дают представления о времени ее воздействия. Примерами такого рода индикаторов являются описанные выше химические вещества.

4-й класс - это многопараметровые индикаторы. Они содержат красители, изменяющие свой цвет при сочетанном воздействии нескольких параметров стерилизации, чаще всего - температуры и времени. Примером таких индикаторов служат термовременные индикаторы для контроля воздушной стерилизации.

5-й класс - интегрирующие индикаторы. Эти индикаторы реагируют на все критические параметры метода стерилизации. Характеристика этого класса индикаторов сравнивается с инактивацией высокорезистентных микроорганизмов.

6-й класс - индикаторы-эмуляторы. Эти индикаторы должны реагировать на все контрольные значения критических параметров метода стерилизации.

Биологический метод

Наряду с физическими и химическими применяется бактериологический метод контроля стерилизации. Он предназначается для контроля эффективности стерилизационного оборудования. До недавнего времени для контроля паровой и воздушной стерилизации использовались пробы садовой земли, содержащей микроорганизмы, высокорезистентные к воздействию стерилизующих факторов. Однако устойчивость микроорганизмов в различных пробах неодинакова, что не позволяет стандартизировать результаты контроля.

В настоящее время для проведения бактериологического контроля используются биотесты, имеющие дозированное количество спор тест-культуры. Контроль эффективности стерилизации с помощью биотестов рекомендуется проводить 1 раз в 2 недели. В зарубежной практике принято применять биологическое тестирование не реже 1 раза в неделю.

В ряде случаев возникает необходимость проведения контроля с помощью биотестов каждой загрузки стерилизатора. Прежде всего, речь идет о стерилизации инструментов, используемых для выполнения сложных оперативных вмешательств, требующих применения высоконадежных стерильных материалов. Каждая загрузка имплантируемых изделий также должна подвергаться бактериологическому контролю. При этом использование простерилизованных материалов задерживается до получения отрицательных результатов контроля. Тех же принципов при определении периодичности контроля рекомендуется придерживаться в отношении газовой стерилизации, являющейся по сравнению с другими методами более сложной.

Начало формы

Индикаторы и интеграторы

Индикаторы 2-го класса. Самый характерный представитель этого класса индикаторов - индикатор теста Бовье-Дика (Bowie-Dick). Онпредназначен для испытания эффективности вакуумной системы парового стерилизатора. Выполняемый ежедневно, этот тест должен первым сигнализировать о неисправности стерилизатора. Тест не определяет качество стерилизации как таковое, но является неотъемлемой частью всесторонней программы гарантии стерилизации. С помощью теста пользователь определяет, что вакуумная стадия стерилизатора удаляет достаточное количество воздуха до введения пара в камеру, а также проверяется герметичность камеры в течение цикла стерилизации. Другими словами, с помощью теста Бовье-Дика можно оценить равномерность распределения пара в камере стерилизатора. Индикатор теста представляет собой лист бумаги с нанесенным на него сложным рисунком из химического состава, изменяющего свой цвет под воздействием насыщенного водяного пара. Лист размещается внутри стопки текстильных изделий при проведении стандартного цикла стерилизации. Сейчас выпускаются так называемые "пакеты Бовье-Дика", в которых контрольный лист размещен между листами плотной фильтровальной бумаги, имитирующей стопку текстиля. Такие пакеты можно использовать при пустой камере стерилизатора или вместе со стерилизуемым, например, инструментарием. Неудачный результат проявляется более светлым цветом в центре образца чем по краям, либо неравномерным изменением цвета рисунка. Положительным результат считается при однородном изменении цвета рисунка по всему листу индикатора. Вариантом теста Бовье-Дика является Хеликс-тест (Helix-test). Индикаторы 3-го класса. Термохимический индикатор представляет собой стеклянную трубку с химическим веществом, изменяющим свое агрегатное состояние или цвет при температуре, близкой к температуре стерилизации. В современном виде это -полоска бумаги, на которую нанесена термоиндикаторная краска. Определение параметров, достигнутых в процессе стерилизации, основано на изменении цвета термоиндикаторной краски при достижении "температуры перехода", строго определенной для каждой краски. Такие индикаторы применялись (да, наверное, применяются и до сих пор) для контроля воздушной стерилизации.
Индикаторы 4-го класса. Они отличаются от предыдущего класса только тем, что индикаторная краска меняет свой цвет только в течении определенного времени воздействия контролируемого фактора. Поэтому чаще всего маркируются двумя цифрами, например: 180-60 (180 градусов, 60 минут). Индикаторы 5-го класса. Эти индикаторы уже называются интеграторами. Цвет контрольной метки интегратора должен необратимо изменяться в ходе стерилизации только при соответствии всех критических параметров примененного процесса необходимым требованиям. К примеру, при температуре 132-135 0 С цвет метки полностью изменится в течение от 3,0 до 3,5 минут при условии воздействия на интегратор насыщенноговодяного пара. Аналогично работают интеграторы этиленоксидной стерилизации. Одновременные испытания химических интеграторов и биологических индикаторов показали, что цвет химического индикатора изменяется не раньше, чем пройдет время, необходимое для полного уничтожения контрольных микроорганизмов биологического индикатора. Цветной стандарт для сравнения должен быть напечатан на каждой полоске интегратора. Индикаторы 6-го класса. Теоретически эти индикаторы (эмуляторы) реагируют на все, а не только на критические параметры процесса стерилизации. Но, честное слово, я не представляю себе, на что еще можно реагировать в камере парового стерилизатора, кроме как на температуру, давление и пар... На свет, что ли? Зато они дороже. Биологические индикаторы. Они представляют собой пластиковый контейнер с крышечкой, содержащий хрупкую ампулу с восстанавливающей средой и бумажную полоску, зараженную спорами контрольных микроорганизмов. Индикатор размещается непосредственно в стерилизационной камере, либо закладывается в контейнеры и упаковки, предназначенные к стерилизации, в процессе их подготовки. Никаких предварительных манипуляций с индикатором производить не требуется - он полностью готов к применению. После окончания стерилизационного цикла индикатор должен быть извлечен и подвергнут инкубации для контроля инактивации содержащихся в нем спор микроорганизмов. После извлечения из камеры стерилизатора надо раздавить находящуюся внутри ампулу и инкубировать при рекомендованной температуре в течение необходимого времени - обычно это 24 часа. Ошибка стерилизации проявляется изменением цвета и/или помутнением среды.

Основные противоэпидемические мероприятия

для предотвращения возникновения ВБИ

Стерилизация – удаление или уничтожение всех живых микроорганизмов (вегетативных и споровых форм) внутри или на поверхности предметов. Стерилизация проводится различными методами: физическими, механическими и химическими.

Методы стерилизации

Физические методы. При стерилизации физическими методами используют действие высоких температур, давления, ультрафиолетового облучения и др.

Самым распространенным методом стерилизации является воздействие высокой температуры. При температуре, приближающейся к 100 0 С, происходит гибель большинства патогенных бактерий и вирусов. Споры почвенных бактерий-термофилов погибают при кипячении в течение 8,5 часов. Наиболее простой, но надежный вид стерилизации – прокаливание . Его применяют при поверхностной стерилизации негорючих и теплоустойчивых предметов непосредственно перед их использованием.

Другим простым и легко доступным методом стерилизации считается кипячение . Этот процесс проводят в стерилизаторе – металлической коробке прямоугольной формы с двумя ручками и плотно закрывающейся крышкой. Внутри расположена вынимающаяся металлическая сетка с ручками по бокам, на которую кладут стерилизуемый инструмент. Основной недостаток метода заключается в том, что он не уничтожает споры, а только вегетативные формы.

При паровой стерилизации необходимо выполнение определенных условий, которые гарантируют ее эффективность и сохранение стерильности изделий в течение определенного срока. Прежде всего, стерилизация инструментов, операционного белья, перевязочного материала должна проводиться в упаковке. С этой целью используют: стерилизационные коробки (биксы), двойную мягкую упаковку из бязи, пергамент, влагопрочную бумагу (крафт-бумага), полиэтилен высокой плотности.

Обязательное требование к упаковке – герметичность. Сроки сохранения стерильности зависят от вида упаковки и составляют трое суток для изделий простерилизованных в коробках без фильтров, в двойной мягкой упаковке из бязи, бумаги мешочной влагопрочной.

Стерилизация сухим жаром . Процесс стерилизации сухим жаром проводят в сухожаровом шкафу (в печи Пастера и др.) – металлическом шкафу с двойными стенками. В корпусе шкафа расположены рабочая камера, в которой имеются полки для размещения предметов для обработки и нагревательные элементы, которые служат для равномерного нагрева воздуха в рабочей камере

Режимы стерилизации:

- температура 150 0 С – 2 часа;

- температура 160 0 С -170 0 C – 45 минут-1час;

- температура 180 0 C – 30 минут;

- температура 200 0 C – 10-15 минут.

Необходимо помнить, что при температуре 160 0 С бумага и вата желтеют, при более высокой температуре – сгорают (обугливаются). Началом стерилизации является тот момент, когда температура в печи достигает нужной величины. После окончания стерилизации печь выключается, прибор остывает до 50 0 С, после чего из него вынимают простерилизованные предметы.

Стерилизация текучим паром . Этот вид стерилизации производится в аппарате Коха или в автоклаве при незавинченной крышке и открытом выпускном кране. Аппарат Коха представляет собой металлический полый цилиндр с двойным дном. Стерилизуемый материал загружают в камеру аппарата не плотно, для того, что бы обеспечить возможность наибольшего контакта его с паром. Начальный подогрев воды в приборе происходит в течение 10-15 минут. Текучим паром стерилизуют материалы, которые разлагаются или портятся при температуре выше 100 0 С – питательные среды с углеводами, витаминами, растворы углеводов и т. п.

Стерилизацию текучим паром проводят дробным методом – при температуре не выше 100 0 С по 20-30 минут в течение 3-х дней. При этом вегетативные формы бактерий погибают, а споры сохраняют жизнеспособность и прорастают в течение суток при комнатной температуре. Последующее прогревание обеспечивает гибель этих вегетативных клеток, появляющихся из спор в промежутках между этапами стерилизации.

Тиндализация – метод дробной стерилизации, при котором прогревание стерилизуемого материала проводится при температуре 56-58 0 С в течение часа 5-6 дней подряд.

Пастеризаци я – однократное нагревание материала до 50-65 0 С (в течение 15-30 минут), 70-80 0 С (в течение 5-10 минут). Используется для уничтожения бесспоровых форм микробов в пищевых продуктах (молоко, соки, вино, пиво).

Стерилизация паром под давлением . Стерилизация проводится в автоклаве под давлением обычно (посуда, физиологический раствор, дистиллированная вода, питательные среды, не содержащие белков и углеводов, различные приборы, изделия из резины) в течение 20-30 минут при температуре 120-121 0 С (1 атм.), хотя могут быть использованы и другие соотношения между временем и температурой в зависимости от стерилизуемого объекта.

Любые растворы, содержащие белки и углеводы, стерилизуют в автоклаве при 0,5 атм. (115 0 С) в течение 20-30 минут

Любой инфицированный микроорганизмами (заразный) материал стерилизуют при давлении в 1,5 атм. (127 0 С) – 1 час, или при давлении 2,0 атм. (132 0 С) – 30 минут.

Стерилизация облучением . Излучение может быть неионизирующим (ультрафиолетовое, инфракрасное, ультразвуковое, радиочастотное) и ионизирующим – корпускулярным (электроны) или электромагнитным (рентгеновские лучи или гамма-лучи).

Ультрафиолетовое облучение (254 нм) обладает малой проникающей способностью, поэтому требует достаточно длительного воздействия и используется в основном для стерилизации воздуха, открытых поверхностей в помещениях.

Ионизирующее излучение , в первую очередь, гамма-облучение успешно применяется для стерилизации в промышленных условиях медицинских изделий из термолабильных материалов, поскольку позволяет быстро облучать материалы еще на стадии производства (при любой температуре и герметичной упаковке).Используется для получения стерильных одноразовых пластмассовых изделий (шприцы, системы для переливания крови, чашки Петри), и хирургических перевязочных и шовных материалов.

Механические методы . Фильтры задерживают микроорганизмы благодаря пористой структуре матрикса, но для пропускания раствора через фильтр требуется вакуум или давление, поскольку сила поверхностного натяжения при таком малом размере пор не дает жидкостям фильтроваться.

Существуют 2 основных типа фильтров – глубинные и фильтрующие. Глубинные фильтры состоят из волокнистых или гранулированных материалов (асбест, фарфор, глина), которые спрессованы, свиты или связаны в лабиринт проточных каналов, поэтому четкие параметры размера пор отсутствуют. Частицы задерживаются в них в результате адсорбции и механического захвата в матриксе фильтра, что обеспечивает достаточно большую емкость фильтров, но может приводить к задержке части раствора.

Фильтрующие фильтры имеют непрерывную структуру, и эффективность захвата ими частиц определяется в основном соответствию их размеру пор фильтра. Мембранные фильтры имеют низкую емкость, их эффективность не зависит от скорости протока и перепада давлений, а фильтрат почти или совсем не задерживается.

Мембранная фильтрация в настоящее время широко применяется для стерилизации масел, мазей и растворов, неустойчивых к нагреванию, – растворы для внутривенных инъекций, диагностические препараты, растворы витаминов и антибиотиков, среды для культур тканей и т.д.

Химические методы. Химические методы стерилизации, связанные с использованием химических веществ, обладающих явно выраженной антимикробной активностью, делятся на 2 группы: а) стерилизация газами; б) растворами (известна как дезинфекция).

Химические методы стерилизации газами применяют в лечебно-профилактических учреждениях для обеззараживания медицинских материалов и оборудования, которые нельзя стерилизовать другими способами (оптические приборы, кардиостимуляторы, аппараты искусственного кровообращения, эндоскопы, изделия из полимеров, стекла).

Бактерицидными свойствами обладают многие газы (формальдегид, окись пропилена, озон, надуксусная кислота и метилбромид), но шире всего используется окись этилена, поскольку она хорошо совместима с различными материалами (не вызывает коррозию металла, порчи обрабатываемых изделий из бумаги, резины и всех марок пластмасс). Время экспозиции при использовании газового метода стерилизации варьирует от 6 до 18 часов в зависимости от концентрации газовой смеси и объема специального аппарата (емкости) для этого вида стерилизации. Стерилизация растворами применяется при обработке больших поверхностей (пространств) или медицинских приборов, которые не могут быть обеззаражены другими методами.

Предстерилизационная обработка . Согласно требованиям отраслевого стандарта большинство изделий медицинского назначения из металла, стекла, пластмасс, резины проходят предстерилизационную обработку, состоящую из нескольких этапов:

Замачивание в моющем растворе при полном погружении изделия в дезинфицирующий раствор в течение 15 минут;

Мойка каждого изделия в разобранном виде в моющем растворе в ручном режиме в течение 1 минуты;

Ополаскивание под проточной водой хорошо промытых изделий в течение 3-10 минут;

Сушка горячим воздухом в сушильном шкафу.

Контроль качества предстерилизационной очистки изделий медицинского назначения на наличие крови проводят путем постановки амидопириновой пробы. Остаточные количества щелочных компонентов моющего средства определяют с помощью фенолфталеиновой пробы.

Согласно требованиям этого же ОСТа обязательным условием стерилизации растворами изделий медицинского назначения является полное погружение изделий в стерилизационный раствор в разобранном виде, с заполнением каналов и полостей, при температуре раствора не менее 18°С .

После стерилизации изделия быстро извлекают из раствора с помощью пинцетов или корнцангов, удаляют раствор из каналов и полостей, затем дважды последовательно промывают простерилизованные изделия стерильной водой.

Простерилизованные изделия используют сразу по назначению или помещают в стерильную емкость, выложенную стерильной простыней, и хранят не более 3-х суток. Препараты, используемые для стерилизации, классифицируют по группам: кислоты или щелочи, перекиси (6% раствор перекиси водорода), спирты (этиловый, изопропиловый), альдегиды (формальдегид, глутаровый альдегид), галогены (хлор, хлорамин, иодофоры – вескодин), четвертичные аммониевые основания, фенольные соединения (фенол, крезол), 20% Бианол, 20% Колд-Спор. Кроме того, в качестве удобных и экономичных дезинфицирующих растворов могут использоваться универсальные препараты, т.е. позволяющие проводить обеззараживание от всех форм микроорганизмов (бактерий, в том числе микобактерий туберкулеза; вирусов, включая ВИЧ; патогенных грибов), или комбинированные препараты («Дезэффект», «Аламинал», «Септодор», «Виркон»), совмещающие одновременно два процесса – дезинфекцию и предстерилизационную обработку.

Биологическая стерилизация основана на применении антибиотиков; используют ограниченно.

Контроль стерилизации

Контроль стерилизации осуществляется физическими, химическими и биологическими методами.

Физический метод контроля осуществляют с помощью средств измерений температуры (термометры) и давления (манометры).

Химический метод контроля предназначен для оперативного контроля одного или нескольких в совокупности режимов работы паровых и воздушных стерилизаторов. Осуществляют его с помощью химических тестов и термохимических индикаторов. Химические тесты – это запаянная с обоих концов стеклянная трубка, заполненная смесью химических соединений с органическими красителями, или только химическим соединением, изменяющим свое агрегатное состояние и цвет при достижении для него определенной температуры плавления. Упакованные химические тесты нумеруют и размещают в разных контрольных точках паровых и воздушных стерилизаторов. Термохимические индикаторы представляют собой полоски бумаги, на одной стороне которых нанесен индикаторный слой, изменяющий свой цвет на цвет эталона при соблюдении температурных параметров режима стерилизации.

Биологический метод предназначен для контроля эффективности работы стерилизаторов на основании гибели спор тест-культур. Осуществляют его с помощью биотестов . Биотест – дозированное количество тест-культуры на носителе, например, на диске из фильтровальной бумаги, или помещенное в упаковку (стеклянные флаконы для лекарственных средств или чашечки из фольги). В качестве тест-культуры для контроля работы парового стерилизатора используются споры Bacillus stea r othermophilus ВКМ В-718, а воздушного стерилизатора – споры Bacillus licheniformis . После стерилизации тесты помещают на питательную среду. Отсутствие роста на питательной среде свидетельствует о гибели спор во время стерилизации.

Биологический контроль. Этот вид контроля проводят 2 раза в год. Для этого используют биотесты, предназначенные для конкретного вида паровой или суховоздушной стерилизации.

Пронумерованные пакеты с биотестами размещают в контрольных точках стерилизатора. После проведенной стерилизации в пробирки с биотестами вносят 0,5 мл цветной питательной среды, начиная со стерильной пробирки для контроля питательной среды и заканчивая контрольным тестом, не подвергавшимся стерилизации (контроль культур). Далее пробирки инкубируют. После чего проводят учет изменения цвета питательной среды. В контроле (стерильная проба) цвет среды не изменяется. В пробирке с контролем культуры цвет среды должен измениться на цвет указанный в паспорте, что свидетельствует о наличии жизнеспособных спор.

Работа считается удовлетворительной, если цвет питательной среды во всех биотестах не изменился. Результаты регистрируют в журнале.

При необходимости контроля за стерильностью медицинских изделий, подвергнутых стерилизации, лаборант бактериологической лаборатории или операционная сестра под руководством сотрудников баклаборатории осуществляет забор проб на стерильность.

Центральное стерилизационное отделение в лпу (цсо).

Задача центрального стерилизационного отделения (ЦСО) состоит в обеспечении лечебно-профилактических учреждений стерильными изделиями медицинского назначения: хирургическими инструментами, шприцами, иглами, контейнерами, хирургическими перчатками, лейкопластырями, перевязочными и шовными материалами и др.

Функции центрального стерилизационного отделения (ЦСО):

Прием, хранение различных материалов до их обработки и стерилизации;

Разборка, выбраковка, учет изделий;

Предстерилизационная очистка (мытье, сушка);

Комплектование, упаковка, укладка в стерилизационную тару;

Стерилизация изделий;

Контроль качества предстерилизационной очистки и стерилизации;

Ведение документации и строгий учет приема и выдачи изделий;

Выдача стерильных изделий больницам, поликлиникам.

Помещения любого центрального стерилизационного отделения (ЦСО) обычно подразделяются на 2 зоны: нестерильную и стерильную. Структура ЦСО предусматривает последовательное прохождение обрабатываемыми изделиями ряда этапов, начиная от приема и сортировки, стерилизации, хранения простерилизованных изделий, и выдачи их для проведения соответствующих манипуляций.

В нестерильной зоне располагаются: моечная, комната изготовления, укладки и упаковки перевязочных материалов, комната обработки перчаток, стерилизационная (загрузочная сторона стерилизатора, нестерильная половина), комната контроля, комплектации и упаковки инструментов, кладовая упаковочных материалов, кабинет персонала, санитарный узел.

В стерильной зоне располагаются: стерилизационная (разгрузочная сторона стерилизатора, если они шкафного типа), склад для стерильных инструментов, экспедиция.

Уборку производственных помещений ЦСО проводят 1 раз в день с обязательным применением дезинфицирующих средств. В ЦСО должна быть обязательно оборудована приточно-вытяжная вентиляция. Полы в этом отделении должны быть покрыты гидроизоляцией, обложены плиткой или покрыты линолеумом. Потолки покрашены масляной краской.

При планировании работы ЦСО необходимо предусматривать организацию 2-х поточной обработки:

1 поток – обработка и стерилизация инструментов, шприцов, игл, резиновых изделий;

2 поток – подготовка и стерилизация белья и перевязочного материала.

Контроль санитарно-гигиенического состояния ЦСО проводится прежде всего микробиологическими методами. При проведении контроля исследуют воздух в ЦСО, делают смывы с предметов медицинского назначения и оборудования, проверяют качество стерилизации.

Основным критерием удовлетворительного санитарного состояния ЦСО является:

- в нестерильной зоне до начала работы в 1 м 3 общее микробное число (ОМЧ) должно быть не более 750, во время работы ОМЧ не должно превышать 1500;

- в стерильной зоне до начала работы в 1 м 3 ОМЧ должно быть не более 500, во время работы ОМЧ не должно превышать 750.

Материалы Второго научного симпозиума по значению биологических индикаторов для контроля стерилизации, состоявшегося в Москве 09 декабря 1998 г.

М.И. Леви, Ю.Г. Сучков, В.Я. Бессонова, Ю.С. Зуева, В.Г. Слизкова, М.М. Лившиц, Н.Н. Панкова, Г.И. Рубан, С.М. Савенко, А.П. Митюков, И.И. Корнев, А.И. Воронков
Испытательный лабораторный центр МГЦД, КБ УД Президента РФ,
Московская медицинская академия им. Сеченова, ЦКБ МЦ УД Президента РФ

Для расчета среднего значения числа жизнеспособных спор, приходящихся на один биологический индикатор, целесообразно воспользоваться распределением Пуассона. Линейный характер зависимости логарифма числа жизнеспособных клеток от времени стерилизации не подтверждается результатами экспериментов. Использование в экспериментах по контролю стерилизации значительного числа биологических индикаторов, высокоинформативной питательной среды и длительных сроков культивирования биологических индикаторов позволило обнаруживать в них жизнеспособные споры после стерилизации чаще, чем обычно и практически при всех употребляющихся в практике режимах. Высевы содержимого биологических индикаторов после стерилизации на плотную питательную среду подтвердили соответствие распределения чашек Петри по числу выросших колоний распределению Пуассона, а это означает случайное и изолированное распределение жизнеспособных спор в биологических индикаторах. В некоторых экспериментах число биологических индикаторов с жизнеспособными спорами после относительно длительных сроков стерилизации превышало число таковых после коротких сроков стерилизации, что не находило себе объяснения в рамках принятых представлений о стерилизации. Мы предположили, что стерилизация представляет собой затухающий волнообразный автоколебательный процесс, это и составляет сущность зависимости логарифма числа жизнеспособных спор в биологических индикаторах от времени стерилизации.
Контроль стерилизаторов, эксплуатируемых в лечебных учреждениях Москвы, показал, что во всех случаях остаются биологические индикаторы, содержавшие жизнеспособные споры после стерилизации. Рекомендованная в стандартах вероятность неудовлетворительных результатов анализа биологических индикаторов (10 -6) значительно меньше той, которая достигнута в наших исследованиях.
Экспериментальная паровая стерилизация отрезков трубочек из синтетических материалов после предстерилизационной очистки сопровождалась неблагоприятными результатами, аналогичными тем, которые были получены с биологическими индикаторами.
Число жизнеспособных спор в биологическом индикаторе после стерилизации является вероятностной величиной, а их обнаружение зависит от числа индикаторов в стерилизационной камере, качества питательной среды и длительности культивирования при подходящей температуре.

Адекватным инструментом оценки эффективности стерилизации являются биологические индикаторы, которые в значительной мере имитируют обсемененные микроорганизмами медицинские изделия, подвергающиеся стерилизации. Последняя избыточна в том смысле, что она рассчитана на уничтожение такого количества микробов, которые обычно на изделиях не обнаруживают, но которые в принципе хоть и в редких случаях исключить нельзя . Поэтому биологические индикаторы содержат устойчивые к стерилизующему агенту споры в количестве на 2-3 порядка выше того количества, которое обычно встречается на стерилизуемых изделиях . Такой подход диктуется массовым применением стерилизации в медицинской практике и необходимостью исключения риска заражения больных и здоровых за счет неэффективной стерилизации.

В связи с тем, что большинство исследователей придерживается убеждения, что логарифм числа микроорганизмов в биологическом индикаторе или на медицинских изделиях является линейной функцией времени стерилизации, то временные рамки могут быть рассчитаны с достаточной определенностью . К настоящему времени в практике применяются несколько видов стерилизации — паровая, горячевоздушная, газовая, радиационная, лучевая и некоторые другие. Известны крупные производители стерилизационной аппаратуры — «МММ», «Луки», «Джонсон и Джонсон» и др.

Мы задались целью определить оптимальные условия для применения биологических индикаторов в процессе стерилизации. Основным объектом исследований явились биологические индикаторы для оценки паровой стерилизации. Биологические индикаторы готовились и оценивались в нашей лаборатории в соответствии с принятыми нормами . Методические особенности настоящего исследования описаны в ходе изложения полученных результатов.

Всякий раз, когда готовится очередная партия спор Bacillus stearothermophilus для биологических индикаторов, контролирующих паровую стерилизацию, испытывают их термоустойчивость. Требуется, чтобы готовые биологические индикаторы (примерно 10 6 спор в индикаторе) содержали жизнеспособные споры после 5-минутной паровой стерилизации при 120-121 о С, но после 15 минутной стерилизации при указанных условиях таковых не содержали. Производственные серии биологических индикаторов, которые выпускает наше учреждение, отвечают этим требованиям. Наш опыт охватывает уже свыше 70 производственных серий спор В. stearothermophilus, из которых были изготовлены миллионы биологических индикаторов. Каждую серию биологических индикаторов неоднократно проверяли на термоустойчивость, в связи с чем накопился изрядный материал. Мы смогли убедиться в том, что к 15 минутам пребывания в автоклаве при 121 о С обычно жизнеспособные споры в биологических индикаторах не обнаруживаются, однако в редких случаях из 10 индикаторов (как правило, такое число индикаторов брали на одну экспозицию) 1 или 2 теста содержали живые споры.

В международных стандартах рекомендуется для определения числа спор в биологических индикаторах после разных экспозиций при 120-121 о С производить высевы содержимого индикаторов на плотную питательную среду, а затем культивировать в термостате и подсчитывать число колоний. Такую методику рекомендуют для тех экспозиций, где предполагается обнаружить число колониеобразующих единиц (КОЕ) больше 50 и меньше 1000 .

Для тех экспозиций, при которых предполагается среднее число спор в биологическом индикаторе менее 1 (то есть не в каждом индикаторе будут обнаружены жизнеспособные споры), рекомендовано использовать для подсчетов распределение редких и случайных событий — распределение Пуассона .

Ниже приведен способ применения распределения Пуассона для указанных целей.
Р х = e -m * m x /x!
где Р х — доля биологических индикаторов с конкретным числом жизнеспособных спор х;
х — конкретное число спор в индикаторе;
х! произведение целых чисел в последовательности х (х-1) (х-2)…[х-(х-1)];
m — среднее число спор в группе биологических индикаторов;
е — экспонента.

Если некоторое число биологических индикаторов не содержит жизнеспособных спор (х = 0), тогда
P 0 = k/n,
где k — число биологических индикаторов, не содержащих живые споры;
n — число биологических индикаторов в группе.

Прологарифмируем приведенное уравнение распределения Пуассона:
ln Р х = ln (e -m * m x /x!).

Учитывая, что 0! = 1, а m 0 = 1, то (ln k — ln n) = -m; m = ln n — ln k.

Иными словами, среднее число спор на один биологический индикатор в группе равно разности натуральных логарифмов числа всех биологических индикаторов и числа биологических индикаторов без живых спор. Справедливость приведенного способа определения среднего числа спор на один биологический индикатор подтверждается высевами на агар (рис. 8).

Рис. 8. Результаты испытания биологических индикаторов со спорами, высушенными на хроматографической бумаге (10 6 спора биологическом индикаторе, паровая стерилизация 121 о С — 45 мин., индикатор типа Attest). По оси ординат — число биологических индикаторов. Левый столбик — результаты испытаний для обычных биологических индикаторов, правый — для биологических индикаторов с новой питательной средой. Заштрихованная часть столбиков — число биологических индикаторов с жизнеспособными спорами.

Приводим пример расчетов. В стерилизационную камеру поместили 20 биологических индикаторов, а после экспозиции в каждый биологический индикатор прилили цветную питательную среду (используемые в нашей лаборатории серии питательной среды реагировали изменением цвета на присутствие единичных живых спор в биологическом индикаторе при культивировании в термостате при 55 o С) . Из 20 использованных в примере биологических индикаторов изменение сиреневого цвета питательной среды на желтый отмечено в 14, а в 6 индикаторах цвет среды остался прежним после культивирования в термостате. Отсюда m = (ln 20 — ln 6) = 2,996 — 1,792 = 1,204. Теперь если мы хотим включить эту величину m в систему координат десятичного логарифма числа спор в биологических индикаторах и времени необходимо взять lg m = lg 1,204 = 0,081.

При многочисленных определениях термоустойчивости спор изредка наблюдалось такое явление, когда 1-2 биологических индикатора из 10 содержали жизнеспособные споры после 15-минутного автоклавирования. В некоторых экспериментах мы расширили набор экспозиций, включив экспозиции в 20, 25, 30 и 35 мин. автоклавирования. В некоторых, хотя и редких случаях, мы отмечали существование живых спор в биологических индикаторах и после относительно длительных экспозиций автоклавирования. Трактовка подобных неожиданных результатов как случайных не могла быть признана правомочной, так как не имела объяснений. Наиболее правдоподобным выглядело предположение о существовании в популяции спор термоустойчивых особей, которые поэтому остаются жизнеспособными после длительных экспозиций. Однако это предположение не подтвердилось, так как потомство спор из пожелтевших биологических индикаторов после 20-40 — минутного автоклавирования обладали термоустойчивостью того же уровня, что и исходная взвесь спор .

К описанной проблеме прибавилась и другая, связанная с сомнениями в линейной зависимости логарифма числа спор в биологическом индикаторе от времени стерилизации . Складывалось впечатление, что если и наблюдается линейная зависимость, то она проявляется лишь на отдельных участках графика. Что касается сроков изменения окраски питательной среды в биологических индикаторах после автоклавирования, то в практической деятельности они ограничивались 48 часами (такой срок рекомендован в инструкциях, имеющих хождение в России, США и европейских странах, хотя еще 10 лет тому назад, когда не использовались цветные среды, наблюдение за появлением мутности в питательном бульоне длилось не менее 7 дней). Однако в наших экспериментах было замечено, что изменение цвета питательной среды при культивировании в термостате наступает не только в первые 48 час., но и в последующие дни, особенно в тех биологических индикаторах, которые относительно долго пребывали в стерилизационной камере.

Если в прежние годы мы использовали в качестве носителя спор инсулиновые флаконы, то в последнее время перешли на пробирки Эппендорфа из полипропилена емкостью 1,5 мл . Эта емкость оказалась гораздо удобнее в качестве носителя спор, чем инсулиновые флаконы.

Учитывая все вышесказанное, мы решили применить в настоящем исследовании биологические индикаторы, приготовленные следующим образом. Взвесь спор, которую мы использовали для изготовления производственных серий биологических индикаторов, разводили дистиллированной водой таким образом, чтобы в 0,02 мл оказалось нужное число спор, которое и вносилось в каждую пробирку Эппендорфа. Затем биологические индикаторы оставляли на 24 час. при 37 о С для высушивания спор, после чего биологический индикатор (пробирку Эппендорфа оставляли открытой) помещали в специальный пакет фирмы Wipack medical, снабженный бумажным ранним индикатором процесса стерилизации. После автоклавирования в каждый индикатор приливали 0,5 мл цветной питательной среды и помещали в термостат при 55 о С на 7 дней с ежедневной регистрацией изменения цвета питательной среды на желтый. Если это случалось, то признавали существование жизнеспособных спор на момент окончания времени автоклавирования.

Легко убедиться в том, что число биологических индикаторов, в которых удавалось обнаружить жизнеспособные споры, зависело от исходного числа индикаторов, помещенных в стерилизационную камеру. Если биологические индикаторы имитируют обсемененные микроорганизмами медицинские изделия, то мы вправе заподозрить, что доля биологических индикаторов с жизнеспособными спорами после стерилизации может соответствовать доле оставшихся нестерильными медицинских изделий. В этом и есть смысл применения контроля стерилизации с помощью биологических индикаторов. Но их число не может быть увеличено до больших чисел, во всяком случае до числа стерилизуемых медицинских изделий. При принятых в России нормах в относительно небольших автоклавах размещают по 5 биологических индикаторов, а в больших — до 13 . Нам представляется, что обозначенного числа биологических индикаторов для изучения пороков стерилизации явно недостаточно, поэтому в представленных ниже экспериментах для контроля стерилизации использовали гораздо большее число индикаторов.

Итак, в наших экспериментах использовали не только большее, чем обычно число биологических индикаторов, но и дольше наблюдали их после стерилизации во время культивирования в термостате. Наконец, мы использовали не только то число спор в индикаторе, которое рекомендовано в стандартах (10 6 спор), но и несколько меньшее (10 5), и несколько большее (10 7). В стерилизационную камеру автоклава в большинстве случаев кроме биологических индикаторов ничего не помещали, чтобы избежать упреков в избыточном заполнении камеры.

Данные, представленные на рис. 1, свидетельствуют о том, что единичные индикаторы содержали жизнеспособные споры даже после 120-минутного автоклавирования (само собой разумеется, что при использовании 5 или 10 биологических индикаторов этот факт не был бы «замечен»). В данном опыте использовали споры двух штаммов В. stearothermophilus — ВКМ-718 (производственный штамм, применяющийся не только в России, но и в других странах, а также недавно выделенный штамм КК , обладающий повышенной термоустойчивостью). Неожиданным оказалось то обстоятельство, что иногда индикаторы с жизнеспособными спорами встречались после 45 или 60 мин. автоклавирования не реже, чем после 30-минутной стерилизации.

Споры В. stearothermophilus
ВК-718 КК
10 7 2,2*10 6
10 6 1,1*10 6
10 5 0,7*10 6

Рис. 1. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus (штаммы ВК-718 и КК). По оси ординат — число биологических индикаторов на каждую экспозицию (25 биологических индикаторов), по оси абсцисс — время стерилизации (мин.). Закрашенная часть столбиков — число биологических индикаторов с жизнеспособными спорами.

Расхождение полученных данных с ожидаемыми заставило нас разработать новую питательную среду, возможности которой в проявлении жизнеспособных спор в биологических индикаторах, прошедших стерилизацию, были гораздо выше, чем у прежней питательной среды.

Наряду с прежней питательной средой испытали две новых рецептуры, причем одна из них оказалась весьма информативной (рис. 2).


Рис. 2. Влияние питательной среды на проявление жизнеспособности спор В. stearothermophilus в биологических индикаторах (носители — инсулиновые флаконы или пробирки Эппендорфа) после стерилизации паром (121 o С — 45 мин.). n — число биологических индикаторов в каждой экспозиции, закрашенная часть столбиков — число биологических индикаторов с жизнеспособными спорами. А — эксперименты с производственной серией 71, число спор в биологическом индикаторе 3,4*10 5 , Б — эксперименты с производственной серией 69, число спор в биологическом индикаторе 10 6 . Номерами 1, 2, 3 обозначены пробы с разными питательными средами.

Таким образом, наряду с повышенным числом биологических индикаторов, удлинением сроков наблюдения за культивируемыми в термостате индикаторами, использовали не только принятую питательную среду, но и новую среду, которая оказалась более информативной, чем прежняя. Не лишне упомянуть, что в один пакет помещали три биологических индикатора с разным числом спор, пакеты размещали в стерилизационной камере случайным образом, после стерилизации биологические индикаторы одновременно заливали одной и той же серией питательной среды и оставляли в одном и том же термостате. Если употребляли прежнюю и новую питательные среды, то число пакетов удваивалось.

Если в прежних опытах автоклавировали биологические индикаторы при 121 o С в течение 45 мин., то в опыте, представленном на рис. 3, биологические индикаторы стерилизовали паром при температуре 132 o С (оба режима осуществляли в автоклаве отечественного производства ВК-75).

Рис. 3. Влияние стерилизации паром при 132 o С на биологические индикаторы в зависимости от исходного числа спор в них (10 5 , 10 6 и 10 7 и времени автоклавирования биологических индикаторов (5, 10, 20, 40 и 60 мин.). По оси ординат — число биологических индикаторов в опыте. В каждой паре столбцов слева — результаты определения числа биологических индикаторов с жизнеспособными спорами при их культивировании в обычной питательной среде, справа — число биологических индикаторов с жизнеспособными спорами при их культивировании в новой питательной среде. Закрашенная часть столбика — число биологических индикаторов с жизнеспособными спорами.

В представленных на рис. 3 данных употребляли различные экспозиции, в числе их и ту (20 мин.), которая рекомендована в соответствующем режиме. Можно отметить, что с помощью новой питательной среды, а иногда даже и с применением прежней, удалось обнаружить жизнеспособные споры в биологических индикаторах после автоклавирования в течение 20-60 мин. Более того, складывается впечатление, что время автоклавирования в указанных на рис. 3 пределах, не очень заметно сказалось на доле биологических индикаторов с жизнеспособными спорами.

Полученные результаты анализа биологических индикаторов после стерилизации побудили нас охарактеризовать те режимы паровой стерилизации, которые приняты в России (рис. 4). Первые два режима осуществлены в аппарате ВК-75, а третий и четвертый — в аппарате фирмы «МММ» (Германия). Само собой разумеется, что все стерилизационные аппараты, использованные в наших исследованиях, находились в полной технической исправности.

Рис. 4. Влияние питательной среды на результаты бактериологического контроля стерилизации. По оси ординат — число биологических индикаторов в опыте. Над каждой парой столбиков указано исходное число спор в биологических индикаторах. В каждой паре столбцов слева — результаты определения числа биологических индикаторов с жизнеспособными спорами при их культивировании в обычной питательной среде, справа — число биологических индикаторов с жизнеспособными спорами при их культивировании в новой питательной среде. Закрашенная часть столбика — число биологических индикаторов с жизнеспособными спорами. Режимы стерилизации приведены над столбиками.

Легко заметить, что ни один из испытанных режимов стерилизации не сопровождался полным освобождением биологических индикаторов от жизнеспособных спор В. stearothermophilus, особенно при употреблении новой питательной среды. Нужно отметить, что процент биологических индикаторов с жизнеспособными спорами несколько увеличивается, если наблюдение за цветом прежней питательной среды в термостате вести не 48 час., а 72 час. (рис. 5, по данным рис. 1 для штамма ВКМ-718).

Рис. 5. Динамика пророста биологических индикаторов (10 5 , 10 6 , 10 7 спор в биологических индикаторах) после автоклавирования при 121 o С в течение 30, 45, 60, 90 и 120 мин. На каждую пробу брали 25 биологических индикаторов. Учет пророста биологических индикаторов вели через 18, 24, 48 и 72 часа их культивирования при 55 o С. Столбики указывают число биологических индикаторов с жизнеспособными спорами на данный срок учета результатов.

Применение новой питательной среды явно ускоряет после стерилизации появление максимального числа биологических индикаторов с жизнеспособными спорами при культивировании в термостате при 55 o С (рис. 6).

Рис. 6. Динамика пророста биологических индикаторов (по 10 5 или 10 6 спор в биологических индикаторах) после автоклавирования (121 o С, 45 мин.). На каждую пробу брали 20 биологических индикаторов. Учет пророста вели через 18, 24, 48 или 120 час. культивирования при 55 o С в разных питательных средах.

Оказалось, что и газовая стерилизация с помощью формальдегида (аппарат фирмы «МММ», Германия) не освобождает биологические индикаторы от жизнеспособных спор В. stearothermophilus (рис. 7.)

Стерилизация формальдегидом 75 o С — 10 мин.




Рис. 7. Влияние питательной среды на результаты бактериологического контроля стерилизации. Обозначения в верхней части рисунка — те же, что и на рис. 4. В нижней части рисунка представлена динамика пророста биологических индикаторов. Под столбиками — время культивирования в сутках. Обозначения — те же, что и на рис. 5.

Тем не менее результаты стерилизации формальдегидом, по крайней мере при использовании прежней питательной среды, выглядят несколько лучше, чем результаты контроля паровой стерилизации.

В наших опытах споры в биологических индикаторах высушивались непосредственно в пробирках Эппендорфа, в то время как в американских биологических индикаторах (Attest) фирмы «3М» споры высушивались на полосках бумаги и в таком виде вносились в пластмассовые емкости, которые снабжены ампулой с цветной питательной средой. После стерилизации ампулу разбивают простым нажатием на корпус индикатора, питательная среда изливается на бумагу с высушенными спорами, а затем при культивировании в термостате удается зафиксировать жизнеспособные споры, если цвет среды меняется на желтый . Мы изготовили некоторое подобие индикатора Attest и проявили их с прежней и новой питательными средами. Оказалось, что применение новой питательной среды заметно улучшило результаты биологического индикатора, аналогичного Attest.

Итак, в наших экспериментах мы, как правило, вносили 120 биологических индикаторов (каждый пакет с биологическими индикаторами занимал объем около 0,1 л) с разной исходной концентрацией спор. Половину индикаторов исследовали с прежней питательной средой, а другую половину — с новой. В большинстве случаев те биологические индикаторы, которые исследовали с помощью новой питательной среды, после автоклавирования вначале заполнялись небольшим объемом жидкости. Половина этого объема использовалась для засева на питательный агар, а к остальной части добавляли питательную среду. Культивирование осуществляли в термостате при 55 o С. Выросшие колонии подсчитывали.

Эти наблюдения послужили основанием для сопоставления распределения чашек Петри с агаром по числу выросших колоний с теоретическим распределением Пуассона (наличие чашек без выросших колоний позволяло исчислить среднее значение числа колоний на одну чашку, а затем по таблицам определить теоретическое распределение и сопоставить его с наблюдаемым в эксперименте). Мы исходили из положения о том, что сумма пуассоновских распределений есть тоже пуассоновское распределение; в подсчеты включали данные по всем трем группам биологических индикаторов (10 5 , 10 6 , 10 7). Поэтому в каждой группе оказалось 60 чашек Петри.

Из данных, представленных на рис. 9., следует, что при всех изученных режимах распределение чашек Петри по числу выросших колоний соответствовало распределению Пуассона. А это, в свою очередь, говорит о том, что оставшиеся после стерилизации жизнеспособные споры представляли собой отдельные независимые друг от друга сущности. Исключение составили данные по режиму паровой стерилизации 121 o С — 45 мин., где теоретическая кривая существенно отклонялась от полученной в эксперименте. В этом последнем случае приходится признать, что указанные расхождения связаны с образованием комочков или глыбок спор в биологическом индикаторе, которые распадаются на отдельные споры при рассеве содержимого на поверхности агара. Так или иначе, но не возникает сомнения, что после стерилизации жизнеспособными в биологических индикаторах остаются единичные споры, в то время как подавляющая масса спор погибает. По крайней мере такая картина вырисовывается при избранном числе биологических индикаторов, помещенных в стерилизационную камеру.

Рис. 9. Соответствие фактических материалов (число колоний на агаре) при разных режимах паровой и газовой стерилизации распределению редких и случайных событий. По оси ординат — общее число биологических индикаторов стерилизации (суммирование результатов для трех групп биологических индикаторов с 10 5 , 10 6 и 10 7 спорами). По оси абсцисс — число КОЕ (колониеобразующих единиц), выросших на агаре после посева материала биологических индикаторов. Сплошная линия — фактические данные, прерывистая линия — расчетная линия в соответствии с распределением случайных и редких событий (отсутствие на графике прерывистой линии указывает на совпадение расчетных и экспериментальных данных).

Одним из поражающих воображение парадоксов является существенное отклонение экспериментальных данных от линейной зависимости логарифма числа спор в биологических индикаторах от времени стерилизации. Совершенно не соответствовали сложившимся представлениям данные об обнаружении жизнеспособных спор в более поздние от начала стерилизации сроки. И уж совсем не укладывались в сознание данные о более частом обнаружении жизнеспособных спор в более поздние сроки, чем в ранние, что отмечалось в некоторых экспериментах. Случалось даже такое, когда при 15-минутной экспозиции споры в биологических индикаторах нежизнеспособны, а после 45-минутной экспозиции в том же опыте обнаруживаются хоть и единичные, но жизнеспособные споры.

В настоящей работе мы представляем свою интерпретацию процесса гибели спор при стерилизации. Приводимое здесь предположение не имеет пока достаточных доказательств, однако объясняет упомянутый выше парадокс.

Мы предполагаем, что зависимость логарифма числа спор в биологических индикаторах от времени стерилизации носит не линейный, а волнообразный характер. По данным рис. 1 мы дали свою интерпретацию зависимости логарифма числа спор от времени стерилизации, воспользовавшись теми средними величинами числа спор в биологических индикаторах, которые были исчислены с помощью распределения Пуассона (рис. 11, 12). Но вначале мы представляем зависимость зоны определения средних величин от числа биологических индикаторов (рис. 10).

Рис. 10. Область применения распределения Пуассона для определения средних значений (m) при различном числе биологических индикаторов в группе (числа в середине рисунка).

Рис. 11. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus, штамм ВК-718. Волнообразные кривые — интерпретация фактических данных. По оси ординат — десятичный логарифм средней концентрации спор в биологическом индикаторе, по оси абсцисс — время стерилизации (мин.). Горизонтальные прямые ограничивают область применения распределения Пуассона для определения средних значений.

Рис. 12. Влияние стерилизации паром в автоклаве ВК-75 (121 o С без вакуума в стерилизационной камере) на жизнеспособность спор В. stearothermophilus, штамм КК. Волнообразные кривые — интерпретация фактических данных. По оси ординат — десятичный логарифм средней концентрации спор в биологическом индикаторе, по оси абсцисс — время стерилизации (мин.). Горизонтальные прямые ограничивают область применения распределения Пуассона для определения средних значений.

Для определения средней величины необходимо иметь биологические индикаторы без жизнеспособных спор, а для обозначения границ зоны значений средних нужно, чтобы хотя бы один биологический индикатор содержал жизнеспособные споры, или, напротив, чтобы хотя бы один биологический индикатор оказался без жизнеспособных спор. Из сопоставления различных зон можно заключить, что с увеличением числа биологических индикаторов в наибольшей мере увеличиваются возможности нижней зоны, в то время как верхняя ее часть расширяется незначительно. Распределение Пуассона табулировано, а использование вышесказанного позволяет рассчитать необходимое число биологических индикаторов, которое позволяет надеяться на обнаружение гораздо большего числа жизнеспособных спор после стерилизации.

Представление фактических данных с помощью волнообразных кривых позволяет понять, почему в некоторых экспериментах столь причудливо выстраиваются на графиках биологические индикаторы с жизнеспособными спорами. Ведь выбор точек на оси времени носит случайный характер, не связанный с закономерностями гибели спор, не учитывающий предполагаемый волнообразный характер. Более того, вполне может случиться, что нижняя. часть волны в районе 15 мин. может оказаться за пределами возможности обнаружения в биологических индикаторах (при избранном их количестве) жизнеспособных спор, в то время как при более длительной экспозиции выбор временной точки совпал с верхней частью волны и позволил обнаружить биологические индикаторы с жизнеспособными спорами.

Мы полагаем, что зависимость между логарифмом числа спор в биологическом индикаторе от времени стерилизации отражает затухающий волнообразный автоколебательный процесс, связанный с тем, что не только споры, но и окружающие их условия определяют результат стерилизации.

В нижеследующей таблице собраны результаты контроля различных видов стерилизации с помощью биологических индикаторов в аппаратах, используемых в практических лечебных учреждениях по тем режимам, которые предусмотрены существующими стандартами. Мы использовали полный цикл стерилизации, значительное число биологических индикаторов, длительное их культивирование после стерилизации, прежнюю и новую питательные среды.

Сводная таблица результатов биологического контроля стерилизации


п/п
Стерилизационный аппарат Стерилизация Биологические индикаторы
наименование фирма-
производитель,
страна
год
выпуска
объем
стерили-
зационной
камеры
вид режим тест-
культура
число
спор
число
индика-
торов в
стерилизац.
% с
жизнеспо-
собными
спорами
после
стерилизац.
обычная
питат.
среда
новая
питат.
среда
1. ГК-100-ЗМ Тюменский з-д
медоборудования,
Россия
1993 100 л Паровая 121 o С,
45 мин.
В. stearo-
themophilus
10 6 40 0 10
2. « « « « « « « « 40 10 25
3. BK-75 « « 75 л « « « 3*10 5 120 20 45
4. « « « « « « « 10 6 60 25 65
5. « « « « « « « 10 5 80 25 75
10 6 80 3 100
10 7 80 13 100
6. « « « « « « « 10 5 75 0 7
10 6 75 0 8
10 7 75 20 20
7. « « « « « « « 10 5 75 0 12
10 6 75 0 13
10 7 75 20 22
8. ГК-100-ЗМ « « 100 л « « « 10 5 40 15 20
10 6 40 0 15
10 7 40 0 35
9. BK-75 « 1992 75 л « 121 o С,
45 мин.
« 10 5 40 0 5
10 6 40 0 25
10 7 40 0 25
10. « « « « « « « 10 6 40 20 50
10 7 40 5 60
11. BK-75 « 1992 75 л Паровая 121 o С,
45 мин.
В. stearo-
themophilus
10 5 40 30 95
10 6 40 50 90
10 7 40 15 100
12. « « « « « « « 10 4 40 35 75
10 6 40 25 35
10 7 40 50 40
13. ГК-100-3М**) « 1988 100 л « « « 10 5 40 10 10
10 6 40 10 10
10 7 40 10 15
14. ГК-100-3М**) « « « « « « 10 5 40 5 0
10 6 40 0 10
10 7 40 5 0
15. ГКД-560 «ЛАД»,
Россия
1996 560 л « 120 o С,
20 мин.
10 5 40 10 5
10 6 40 55 10
10 7 40 65 55
16. Секурокс «МММ»,
Германия
1993 0,5 м 3 « « « 10 5 40 15 30
10 6 40 20 45
17. « « « « « « « 10 5 40 25 70
10 6 40 10 75
18. « « « « « « « 10 5 40 10 80
10 6 40 0 80
10 7 40 10 75
19. Castle
м/с 3622
USA 1997 680 л « « « 10 5 40 0 0
10 6 40 0 5
10 6*) 0 0
10 7 40 0 0
20. Селектомак «МММ»,
Германия
1993 100 л Паровая « « 10 5 40 0 0
10 6 40 0 10
10 7 40 5 20
21. ГК-100-3М**) Тюм. з-д
медооор.,
Россия
1993 100 л « 132 o С,
20 мин.
« 10 5 40 0 0
10 6 40 0 5
10 7 40 10 0
22. ВК-75 « 1992 75 л « « « 10 5 40 5 40
10 6 40 5 60
10 7 40 5 75
23. Селектомак «МММ»,
Германия
1993 100 л Паровая 134 o С,
5 мин.
В. stearo-
themophilus
10 5 40 0 0
10 6 40 0 20
10 7 40 5 10
24. ГКД-560 «ЛАД»,
Россия
1996 560 л Паровая 134 o С,
5 мин.
« 10 5 40 45 25
10 6 40 50 35
10 7 40 35 100
25. Секурекс «МММ»,
Германия
1993 500 л « « « 10 5 40 20 55
10 6 40 20 45
10 7 40 10 70
26. Castle
м/с 3622
USA 1997 680 л « 134 o С,
10 мин.
« 10 5 40 0 0
10 6 40 0 20
10 6*) 20 0
10 7 40 20 25
27. « « « « « « « 10 5 40 0 25
10 6 40 5 15
10 7 40 5 30
28. Комбимак «МММ»,
Германия
1993 70 л Газовая
(формаль-
дегид)
75 o C,
10 мин.
« 10 5 40 5 20
10 6 40 10 45
10 7 40 5 20

Примечание: *) — Для контроля применили биологические индикаторы Biosign фирмы Castle, содержащие фирменную питательную среду.
**) — Накануне испытаний поставлена новая стерилизационная камера.

Самым общим признаком результатов контроля стерилизации является то, что не удалось убедиться в стерильности всех биологических индикаторов по окончании времени стерилизации. Таким образом, этот важнейший контроль свидетельствует о неэффективности в принятом смысле стерилизации, причем наиболее надежной паровой стерилизации. Так как доза 10 7 спор в биологическом индикаторе может быть признана чрезмерно высокой, то целесообразно рассмотреть отдельно результаты контроля стерилизации биологическими индикаторами, содержавшими 10 5 и 10 6 спор. При использовании новой питательной среды какая-то часть биологических индикаторов после стерилизации во всех случаях содержала жизнеспособные споры. Если же использовали прежнюю питательную среду, то в трех случаях при контроле аппарата ВК-75 (30%) биологические индикаторы не содержали жизнеспособных спор. Чаще подобные результаты отмечены при контроле аппаратов зарубежного производства и это может служить некоторым указанием на качественное превосходство над российскими автоклавами.

Причины сложившейся ситуации неясны, как и возможные предложения по совершенствованию стерилизации. Что касается применения бумажных индикаторов стерилизации, то вряд ли следует рассчитывать на большее, нежели контроль состояния некоторых технических характеристик стерилизационного аппарата, особенно вначале процесса. Полное доверие показаниям бумажных индикаторов может способствовать ложному заключению об эффективной стерилизации.

До сих пор речь шла о судьбе биологических индикаторов в процессе стерилизации, что может не во всех случаях отражать особенности реальной стерилизации медицинских изделий. Для стерилизации в качестве «медицинских изделий» брали отрезки трубочек из поливинилхлорида длиной в 1 см, после тщательной промывки их обсеменяли спорами В. stearothermophilus в объеме 0,02 мл, высушивали и подвергали предстерилизационной очистке кипячением в 2% растворе соды в течение 15 мин. . После отмывки в стерильной дистиллированной воде отрезки трубочек на следующий день стерилизовали в пакетах (121 o С — 45 мин.), после чего каждый отрезок помещали в стерильную пробирку Эппендорфа и заливали питательной средой. Культивирование отрезков проводили в термостате при 55 o С. Контрольные отрезки обсеменяли спорами, но не подвергали предстерилизационной обработке. Иными словами, в этом опыте подражали экспериментам с биологическими индикаторами.

Полученные результаты поражают своей неожиданностью — отрезки трубочек, обработанные раствором соды при 100 o С, оказались после стерилизации столь же обсемененными, что и не подвергавшиеся предварительной очистке, которая в настоящее время занимает важное место в методике стерилизации .

Рис. 13. Результаты стерилизации отрезков трубки из поливинилхлорида после их предстерилизационной очистки и без нее. В каждой паре столбиков слева — число отрезков трубки с жизнеспособными спорами при культивировании с обычной питательной средой, справа — с новой питательной средой. Цифры над столбиками — число спор В. stearothermophilus, нанесенных изначально на внутреннюю поверхность отрезков трубки.

В другом опыте отрезки трубочек из силиконовой резины размером в 1 см после тщательной промывки в дистиллированной воде обсеменяли спорами В. stearothermophilus, затем оставляли на 1 час при комнатной температуре. По окончании указанного времени опытные отрезки на 30 мин. погружали в 0,2% раствор дезинфицирующего средства «Септабик» , отрезки тщательно промывали в дистиллированной воде, просушивали на фильтровальной бумаге. Контрольные отрезки обсеменяли спорами, но не обрабатывали средством «Септабик». На следующий день все отрезки закладывали в пакеты и стерилизовали в автоклаве (121 o С — 45 мин.), после чего каждый отрезок помещали в пробирку Эппендорфа, заливали питательной средой и культивировали при 55 o С.

В опыте (рис. 14) результаты испытаний были несколько лучше, чем в предыдущем, так как наблюдалась все же разница в доле проросших опытных и контрольных отрезков трубочек из силиконовой резины, однако эти различия не были впечатляющими. Во всяком случае даже после предстерилизационной очистки стерилизация макетов медицинских изделий оказалась неэффективной. И это несмотря на то, что обрабатывать небольшие отрезки трубочек гораздо легче, чем большие и сложные изделия, где возможные места обсеменения микроорганизмами менее доступны для дезинфицирующих растворов.

Рис. 14. Результаты стерилизации отрезков силиконовой трубки после их предстерилизационной очистки и без нее. В каждой паре столбиков слева — число отрезков трубки с жизнеспособными спорами при культивировании с обычной питательной средой, справа — с новой питательной средой. Числа над столбиками — число спор В. stearothermophilus, нанесенных изначально на внутреннюю поверхность отрезков трубки.

Ввиду необычности полученных результатов необходимо убедиться в том, что не были допущены технические погрешности. На протяжении всего времени исследований и помещениях и в ламинарном боксе расставлялись чашки с питательным агаром, но ни разу бактерии В. stearothermophilus иыделены не были, как и не были выделены из питательной среды и других использованных ингредиентов (в каждом опыте делали посевы питательной среды и дистиллированной воды на 10 агаровых чашек и 10 пробирок Эппендорфа с питательной средой, но безрезультатно). Предположение о том, что число бактерий в биологических индикаторах возрастает во время высушивания, не подтвердилось (известно, что В. stearothermophilus не размножается при 37 o С).

Таким образом полученные результаты являются неутешительными, но все же, по крайней мере, для некоторых авторов ожидаемыми. Из всей огромной массы литературы по термоинактивации споровых бактерий, в том числе фундаментальных исследований , ближе всех к нашей трактовке стоит монография Мунблитн, Тальрозе и Трофимова , которые экспериментов не ставили и пользовались лишь данными литературы. Эти авторы, придерживающиеся объяснения термоинактивации спор за счет термоповреждений жизненно важных белков и сублетальных повреждений мембраны, высказали опасения относительно эффективности стерилизации: «…стандартные условия теплового воздействия (120 o С, 30 мин.) в некоторых случаях не обеспечивают высокой надежности стерилизации», «…существует принципиальная опасность восстановления и размножения в организме человека микроорганизмов, которые были признаны погибшими». По нашим данным даже такие облигатные и непатогенные термофилы как В. stearothermophilus способны к ограниченному размножению при 37 o С, если к питательной среде добавить кровь человека.

Не только биологические индикаторы изредка содержали жизнеспособные споры после стерилизации, но и макеты обсемененных спорами медицинских изделий. Более того, предстерилизационная обработка макетов раствором кипящей соды или 0,2% раствора препарата «Септабик» не сопровождалась достаточным эффектом — стерилизация была неэффективной.

Теперь задача заключается в том, чтобы разработать новые методы, которые смогут гарантировать эффективность стерилизации. Наше представление о кинетике стерилизационного процесса позволили апробировать новые методические предложения, которые оказались перспективными, но требуют разносторонней проверки.

Выводы

1. Распределение редких и случайных событий позволяет рассчитывать среднее число спор на один биологический индикатор для условий, когда число жизнеспособных спор мало и встречаются они далеко не в каждом индикаторе.

2. Имеется достаточно оснований, чтобы усомниться в линейном характере зависимости между логарифмом числа спор в биологических индикаторах и временем от начала стерилизации. Жизнеспособные споры были обнаружены в биологических индикаторах даже через 1-2 часа пребывания в автоклаве при регламентированной температуре.

3. В экспериментах по контролю паровой стерилизации применяли значительное число биологических индикаторов, высокоэффективную цветную питательную среду и недельный срок культивирования в термостате, что в конечном итоге позволило обнаруживать жизнеспособные споры в биологических индикаторах после стерилизации чаще, чем обычно и практически при большинстве употребляющихся в практике режимах.

4. При высевах содержимого биологических индикаторов после стерилизации на плотную питательную среду в ряде случаев обнаруживались единичные колонии В. stearothermophilus, причем в большинстве случаев распределение агаровых чашек Петри по числу колоний в точности соответствовало распределению Пуассона, а это означало, что жизнеспособные споры не зависят друг от друга и расположены изолированно и случайно.

5. В некоторых экспериментах процент биологических индикаторов с жизнеспособными спорами после длительных сроков стерилизации превышал таковой после коротких сроков стерилизации, что не находило удовлетворительного объяснения. Мы предположили волнообразный характер зависимости логарифма числа жизнеспособных спор в биологических индикаторах от времени стерилизации.

6. Контроль стерилизаторов, установленных в практических лечебных учреждениях, показал, что во всех случаях та или иная часть биологических индикаторов содержала жизнеспособные споры после стерилизации, а вероятность неудовлетворительных результатов анализа индикаторов оказалась гораздо выше той, которая рекомендована в стандартах.

7. Экспериментальная паровая стерилизация отрезков трубочек из синтетических материалов, обсемененных спорами, после предстерилизационной очистки закончилась обнаружением жизнеспособных спор у более, чем половины экземпляров, т. е. результатами, аналогичными тем, которые были получены с биологическими индикаторами.

8. Число жизнеспособных спор в биологическом индикаторе после стерилизации является вероятностной величиной, а их обнаружение, кроме всего прочего, зависит от числа индикаторов в стерилизационной камере.

Литература

1. Абрамова И.М. Новые разработки в области стерилизации изделий медицинского назначения. Дезинфекционное дело, 1998, №3, с. 25.
2. Большев А.Н., Смирнов Н.В. Таблицы математической статистики. М., 1965.
3. Вашков В.И. Антимикробные средства и методы дезинфекции при инфекционных заболеваниях. М., 1977.
4. Гутерман Р.Л. Средства контроля термической стерилизации изделий медицинского назначения. Дисс. канд. мед. наук. М., 1993.
5. Кашнер Д. Жизнь микробов в экстремальных условиях. М., 1981.
6. Леви М.И., Бессонова В.Я., Лившиц М.М. Применение цветных питательных сред в процессе контроля стерилизации. Клиническая лабораторная диагностика, 1993, № 2, с. 65-67.
7. Леви М.И. Анализ неблагоприятных результатов паровой и воздушной стерилизации. Дезинфекционное дело, 1996, № 4, с. 58-63.
8. Леви М.И. Значение контроля стерилизации с помощью бумажных индикаторов и биотестов. Дезинфекционное дело, 1997, № 3, с. 24-28.
9. Леви М.И., Сучков Ю.Г., Рубан Г.И., Мищенко А.В. Новые формы бактериальных тестов для контроля разных режимов стерилизации. Там же, с. 29-33.
10. Леви М.И., Сучков Ю.Г., Лившиц М.М. Оптимизация биотестов для контроля паровой стерилизации. Дезинфекционное дело, 1998, № 2, с. 30-33.
11. Леви М.И. Численное определение величины D, стерилизационного времени и выбор контрольных биотестов. Там же, с. 34-42.
12. Методические указания по контролю паровых и воздушных стерилизаторов. Минздрав СССР, от 28.02.91 № 15/6-5.
13. Мунблит В.Я., Тальрозе В.Л., Трофимов В.И. Термоинактивация микроорганизмов. М., 1985.
14. Под ред. Озерецковского Н.А. и Останина Г.И. Бактерийные и вирусные лечебно-профилактические препараты. Аллергены. Дезинфекционно-стерилизационные режимы поликлиник. С.-Петербург, 1998.
15. Сучков Ю.Г., Леви М.И., Бессонова В.Я. Новый термофильный штамм для бактериологического контроля паровой стерилизации (сообщение 1), Дезинфекционное дело, 1996, № 3, с. 28-33.
16. Biological systems for testing sterilizers — Part 1: General requirements. European standard, Draft pr EN 866-1.1995.
17. Farrell J., Rose A.N. Temperature effect on microorganisms. In: «Thermobiology», p. 147-218. Acad. press, London-New-York, 1967.
18. Graham G.S. Biological indicators for hospital and industrial sterilization, p. 54-72. In: «Sterilization of medical product». Johnson and Johnson. Moscow, 1991.
19. Greene V.W. Principles and practice of disinfection, preservation and sterilization. Oxford, 1982.
20. International standard ISO/DIS 14161. Sterilization of health care products — guidence for the selection, use and interpretation of results. 1998.
21. McCormick P.J., Scoville J.R. — патент USA № 4.743.537, 1988 г.
22. Medical devices — Estimation of the population of microorganisms on product. Part 2 guidence, pr EN 1174-2.1994 г.
23. Russel A.D. The destruction of bacterial spores. Acad. press, London-New-York, 1982.
24. Russel A.D. Fundamental aspects of microbial resistance to chemical and physical agents. In: «Sterilization of medical product», v. V, p. 22-42. Johnson and Johnson, 1991.
25. Sussman A., Halvorson H. Spores, their dormancy and germinatiom. New-York-London, 1967.
26. Wicks J.H., Foltz W.E. Европейский патент № 0414.968 A1, 1991 г.
27. Журавлева В.И., Большедворская З.Ф. Оценка питательных сред для культивирования тест-микроорганизмов, используемых при контроле эффективности стерилизации в автоклавах. Лабораторное дело, 1988, № 11, с. 63-64.
28. Калинина Н.М., Шилова С.В., Мотина Г.Л., Чайковская С.М. Изучение термоустойчивости спор культуры Вас. stearothermophilus, используемой для приготовления биоиндикаторов. Антибиотики, 1982, № 2, с. 117-120.
29. Калинина Н.М., Мотина ГЛ., Чайковская С.М., Шилова С.В. Приготовление биоиндикаторов для контроля эффективности процессов стерилизации. Антибиотики, 1983, № 10, с. 600-603.

Используют биологические индикаторы – известные микроорганизмы, наиболее устойчивые к данному способу обработки:

Споры Bacillus stearothermophilus для контроля эффективности автоклавирования

Bacillus subtilis – для контроля сухожаровой стерилизации

Физико-химические индикаторы – вещества, которые претерпевают видимые изменения (изменяют цвет, агрегатное состояние и т.д.) только при соблюдении правильного режима обработки.

Микробиологический контроль объектов, подвергшихся стерилизации в повседневной практике не производится. Его заменяет косвенный контроль – контроль работы стерилизаторов.

Для проведения микробиологического контроля производят посев кусочков материала, смывов с предметов, подвергшихся стерилизации, на среды, позволяющие обнаружить аэробные и анаэробные бактерии, грибы. Отсутствие роста после 14 дней инкубации в термостате свидетельствует о стерильности предмета

24. Определение понятий "дезинфекция", "антисептика". Основные методы дезинфекции. Микробиологический контроль эффективности дезинфекции.

Дезинфекция – обеззараживание объектов окружающей среды: уничтожение патогенных для человека и животных микроорганизмов с помощью химических веществ, обладающих антимикробными свойствами. В отличие от стерилизации дезинфекция приводит к гибели большинства, но не всех форм микробов и обеспечивает только снижение микробной контаминации (загрязнения), а не полное обеззараживание объекта.

Антисептика – комплекс лечебно-профилактических мероприятий, направленных на уничтожение микроорганизмов, способных вызвать инфекционный процесс на повреждённых или интактных участках кожи или слизистых оболочек, путем обработки микробицидными веществами – антисептиками.

Для дезинфекции применяют физические и химические ме­тоды.

I. Физические методы.

Воздействие высоких темпера­тур.

Кипячение. Шприцы, мелкий хирургический инструмента­рий, предметные и покровные стекла и некоторые другие пред­меты помещают в стерилизаторы, в которые наливают воду. Для устранения жесткости и повышения температуры кипяче­ния к воде добавляют 1-2 % раствор бикарбоната натрия. Кипячение производят не менее 30 мин. При кипячении не­которые вирусы (например, вирус гепатита В) и споры бакте­рий сохраняют жизнеспособность.

Пастеризация основана на антибактериальном действии температуры в отношении вегетативных клеток, но не бакте­риальных спор. Нагревание материала производится при тем­пературе 50-65 "С в течение 5-10 мин с последующим бы­стрым охлаждением. Обычно пастеризуют напитки и пищевые продукты (вино, пиво, соки, молоко и др.).


Воздействие ионизирующих излучений.

Ультрафи­олетовое излучение (УФ) с длиной волны 260-300 мкм обладает достаточно выраженным микробицидным действием, однако некоторые виды микробов и споры резистентны к УФ. Поэто­му УФ-облучение не способно обеспечить полного уничтоже­ния микрофлоры - стерилизацию объекта. Обработку УФ обыч­но используют для частичного обеззараживания (дезинфекции) крупных объектов: поверхностей предметов, помещений, воз­духа в медицинских учреждениях, микробиологических лабо­раториях и т.д.

Гамма-излучение обладает выраженным микробицидным дей­ствием на большинство микроорганизмов, включая вегетатив­ные формы бактерий и споры большинства видов, грибы, виру­сы. Применяют для стерилизации пластиковой посуды и меди­цинских инструментов одноразового использования. Следует иметь в виду, что обработка гамма-излучением не обеспечивает уничтожения таких инфекционных агентов, как прионы.

II. Химические методы. Это обработка объекта дезинфектантами - микробицидными химическими веществами. Некото­рые из этих соединений могут оказывать токсическое действие на организм человека, поэтому их применяют исключительно для обработки внешних объектов. В качестве дезинфектантов обычно используют:

§ перекись водорода,

§ формальдегид,

§ фенолы (3-5 % раствор фенола, лизола или карболовой кислоты),

§ йодофоры.

Выбор дезинфицирующего вещества и его концентрации зави­сят от материала, подлежащего дезинфекции. Дезинфекция может быть достаточной процедурой для обеззараживания только таких медицинских инструментов, которые не прони­кают через естественные барьеры организма (ларингоскопы, цистоскопы, системы для искусственной вентиляции легких). Некоторые вещества (борная кислота, мертиолат, глицерин) применяют как консерванты для приготовления лечебных и диагностических сывороток, вакцин и других препаратов.

25. Определение понятия "химиотерапия". Основные группы химиотерапевтических веществ. Механизмы антимикробного действия. Химиотерапевтический индекс.

Химиотерапия – лечение инфекционных и опухолевых заболеваний химическими препаратами, не являющимися продуктами реакции организма и возбудителя.

Применяют следующие препараты:

Препараты акридина (риванол, трипафлавин, акрицид, флавицид и др.) – при гноеродных заболеваниях, воспалит. процессах зева и носоглотки

Сульфаниламиды (стрептоцид, этазол, альбуцид, сульфадиметоксини др.) – при гноеродных заболеваниях, ангинах, скарлатине, роже, пневмонии, дизентерии, гонорее, анаэробной инфекции и др.; механизм действия состоит в том, что они представляют собой структурные аналоги парааминобензойной кислоты, т.е. являются микробными антиметаболитами

Диаминопиримидины (триметоприм, пириметамин, тетроксоприм) – также являются антиметаболитами, подменяя пиримидиновые основания; спектр действия шире

Нитрофураны (фуразолидон, фурациллин, фурадонин, фурагинид) – при кишечных инфекциях; блокируют ферментные системы микробной клетки

Хинолоны (неграм, нитроксолин, ципролет и др.) – нарушают различные этапы синтеза ДНК микробной клетки

Азолы (кандид, низорал, флуконазол и др.) – противогрибковые; механизмы действия – ингибирование биосинтеза стеролов клеточной стенки, ингибирование разл. внутриклеточных процессов, приводящее к накоплению перекиси водорода и повреждению клеточных органелл, ингибирование трансформации бластоспор в инвазивный мицелий (род Candida)

Противовирусные (интерферон и интерфероногены, дезоксирибонуклеаза и рибонуклеаза, бензамидазол и гуанидин, ремантадин, ацикловири др.)

Антибластомные (азотиприты, антиметаболиты, диэпоксиды и др.)

Антибиотики

Химиотерапевтический индекс (ХИ) равняется частному от деления терапевтической дозы препарата, уничтожающей возбудителя, на максимально переносимую организмом дозу: ХИ = min терапевтическая доза /max переносимая доза. Если индекс меньше 1, препарат может быть практически использован; если больше, то введение препарата в организм сопровождается токсическими явлениями. Такой препарат нельзя применять для лечения соответствующих инфекций.

Антимикробное (антибактериальное) действие антибиотиков измеряют в единицах действия (ЕД), содержащихся в 1 мл раствора препарата или в 1 мг химически чистого вещества. За единицу активности принимается то минимальное количество антибиотика, которое задерживает рост стандартного штамма определённого вида микроорганизма в строго определённых условиях. В 1 мг большинства антибиотиков содержится 1000 ЕД (но, например, в 1 мг бензилпенициллина содержится 1670 ЕД, нистатина – не менее 4000 ЕД).

Механизм действия антибиотиков – это изменения в структуре и обмене веществ и энергии микроорганизмов, которые ведут к гибели микроорганизмов, приостановке его роста и размножения:

1. Нарушение синтеза клеточной стенки бактерий (пенициллин, цефалоспорины)

2. Тормозят синтез белка в клетке (стрептомицин, тетрациклин, левомицетин)

3. Угнетают синтез нуклеиновых кислот в микробной клетке (рифампицилин)

4. Угнетают ферментные системы (грамицидин)







2024 © styletrack.ru.