Термоядерный реактор откроет человечеству новую эру. Что такое «токамак»? Термоядерный реактор откроет человечеству новую эру Температура плазмы в токамаке


Мы знаем, что русские слова «белуга», «водка», «самовар» вошли в иностранные языки без перевода. Но, кроме иронии, это ничего не вызывает. Другое дело такое «непереводимое» слово, как «спутник», показывающее высокий потенциал отечественной науки и техники. Но «спутник» уже в прошлом. Появился ли какой-то новый термин, который может вызывать гордость за страну?

200 тыс. кВт-ч электроэнергии достаточно, чтобы обеспечить все потребности современного европейца в течение 30 лет. Для выработки такого количества элект­ричества достаточно одной ванны воды (45 л) и столько лития, сколько его содержится в одной батарейке для компьютера. Но при нынешних технологиях получения энергии за счёт ископаемого топлива на это уходит 70 т угля.

Есть ещё одно слово, которое на всех языках произносится одинаково - «токамак». Русская аббревиатура дала название многочисленным сооружённым по миру установкам, в которых плазма в процессе термоядерного синтеза удерживается магнитным полем. Токамаком называют и будущий реактор международного проекта ИТЭР, который должен дать человечест-ву доступ к практически неисчерпаемому источнику энергии.

«Это русское слово, - говорит участникам пресс-тура в Международную организацию ИТЭР (Интернациональный термоядерный экспериментальный реактор. - Авт. ) Роберт Арно из службы коммуникаций. - А что оно означает, скажет мой коллега из России».

И Александр Петров, представитель российского Проектного центра ИТЭР , охотно поясняет: «Тороидальная камера с магнитными катушками!» Потом ему ещё не раз пришлось повторять это в диктофоны и камеры журналистов стран Европы, Кореи, Китая, Канады…

Как происходит синтез?

Идею токамака предложил академик Лаврентьев, а доработали её Андрей Сахаров и Игорь Тамм . Если нынешние технологии ядерной энергетики основаны на реакции распада, когда из более тяжёлых ядер образуются более лёгкие, то при термоядерном синтезе, наоборот, лёгкие атомные ядра соединяются, образуя более тяжёлые.

В основном речь идёт об изотопах водорода - дейтерии и тритии. Ядро первого состоит из протона и нейтрона, а ядро второго - из протона и двух нейтронов. В обычных условиях одинаково заряженные ядра, конечно, отталкиваются друг от друга, но при сверхвысоких температурах, наоборот, соединяются. В результате образуется ядро гелия плюс один свободный нейтрон, но главное - при этом высвобождается огромное количество энергии, которую раньше атомы тратили на взаимодействие друг с другом. Дейтерий легко «достаётся» из воды, а тритий более нестабилен, поэтому нарабатывается внутри установки за счёт реакции с литием.

Один термоядерный реактор - Солнце - дал человечеству возможность жить на нашей планете, согревая своим теплом. В центре звезды, где под воздействием гравитации достигается очень высокая плотность плазмы, реакция протекает при температуре 15 млн°С. На Земле достигнуть такой плотности не получится - остаётся только повышать температуру. В реакторе проекта ИТЭР она должна достигать 150 млн°С - в 10 раз выше, чем в солнечном ядре!

Кто-нибудь, кроме физиков, может себе такую представить? А какой из возможных на Земле материалов может её выдержать? Нет такого. Поэтому и придуман токамак. Его вакуумная камера в форме пустотелого «бублика» окружается сверхпроводящими электромагнитами - они создают тороидальное и полоидальное магнитные поля, которые не позволяет раскалённой плазме касаться стенок камеры. Есть ещё и центральный электромагнит - индуктор. Изменение тока в нём вызывает в плазме движение частиц, необходимое для синтеза.

Топлива для термоядерного синтеза нужно минимум, а без-опасность значительно выше, чем при нынешних технологиях. Ведь плотность плазмы очень мала (в миллион раз ниже плотности атмосферы!) - соответственно никакого взрыва быть не может. А при малейшем снижении температуры реакция прекращается - тогда плазма, как говорят физики, просто «осыпается», не нанося никакого вреда окружающей среде. Кроме того, загружаться топливо будет непрерывно, то есть работу реактора легко остановить в любой момент. Радиоактивных отходов он практически не производит.

Сколь долог путь?

С конца 60-х, когда успех советских физиков в области управляемой термоядерной реакции стал очевиден, токамаки появились не только в России, но и в Казахстане, США, Европе, Японии, Китае. Они доказали, что создавать и удерживать высокотемпературную плазму, в которой идёт реакция, реально. Однако до сих пор удержание было коротким, исчисляясь секундами, а также затратным в смысле энергии, потраченной на разогрев. Для науки такие результаты были достаточными, а для того чтобы человечество могло шагнуть в новую энергетическую эру - нет.

И тогда родилась идея международного проекта, основная задача которого - построить реактор, способный вырабатывать энергию в объёмах, значительно больших, чем необходимо для поддержания термоядерной реакции. Q ≥ 10 - так формулируют её физики.

Начало было положено в 1985 г. на встрече глав СССР и США. Проект назвали Интернациональным термоядерным экспериментальным реактором: ITER - в английской транскрипции, ИТЭР - в русской. Он решает общую для всего человечест-ва задачу, да и масштаб таков, что одной стране не потянуть, потому и стал международным. Сегодня в нём участвуют страны ЕС, Китай, Индия, Япония, Республика Корея, Россия и США. Участие каждой стороны определено: Европа - 45%, остальные - по 9% с небольшим, но выражается это не валютой, а осязаемым вкладом - выполненными работами или изготовленным оборудованием.

Понадобились десятилетия, чтобы проект выстроился и «вычертился» - на бумаге, в 3D-моделях. И теперь уже его черты и линии наносятся на реальной площадке на юге Франции, по соседству с исследовательским центром Кадараш, в котором имеется свой токамак.

В чём наш вклад?

Запах прованских трав обволакивает холмистый пейзаж, в том числе и внушительных размеров площадку (42 га, или 60 футбольных полей) с пятью огромными башенными кранами, где полным ходом идёт строительство корпусов, которых будет здесь 39. К 2020 г. оно должно закончиться, но оборудование начнёт поступать раньше - по мере завершения определённых этапов.

Основные поставки из России приходятся по графику на 2016-2017 гг. Наша страна участвует в сооружении всех основных конструкций мегатокамака, изготавливает сверхпроводники, создаёт системы испытаний и диагностики. Более 30 российских предприятий и организаций задействованы в этом, большинство из них - дочерние предприятия Госкорпорации «Росатом». Ведь именно в атомной отрасли, несмотря на пережитые страной тяжёлые времена, удалось сохранить высокий научный и производственный потенциал.

«В рамках российских обязательств изготавливается 25 систем для ИТЭР. Это не эксперименты и не НИОКР - это оборудование, которое надо поставить в Кадараш в срок», - говорит Анатолий Красильников, руководитель Проектного центра ИТЭР - российского агентства ИТЭР .

Само оборудование это уникально - в большинстве случаев для его создания разрабатываются абсолютно новые технологии. К примеру, первая стенка бланкета («одеяла») плазменной камеры, на которую придётся максимальная температурная нагрузка. Какие материалы смогут выдержать? Какие нюансы в конструкцию нужно заложить? На эти вопросы уже нашли ответы в Научно-исследовательском институте электрофизической аппаратуры им. Д. В. Ефремова (НИИЭФА). Стенка будет из бериллия, и не сплошная, а нарезанная маленькими квадратными пластинками - чтобы материалу легче было «дышать» и он не растрескался от высоких температур, как земля в летний зной.

Ещё одна серьёзная задача, которую уже решили росатомовские учёные и специалисты, - соединение друг с другом разных материалов: бериллия - бронзы, меди - нержавеющей стали, вольфрама - меди. Обычная сварка для условий проекта не подходит, поэтому медь наплавляют на вольфрам в вакуумной камере, сталь соединяют с медью методом «сварки взрывом» - тогда образуется единый металлический блок, который уже не разъединить даже сверхвысоким температурам.

Участие в проекте - серьёзный толчок не только для отечественной науки, но и для экономики страны, поскольку даёт возможность шагнуть на иной уровень технологий и производств, а иногда и прыгнуть. К примеру, на Чепецком механическом заводе за 4 года с нуля освоили производство продукции из титановых сплавов. В прошлом году наши атомщики уже завершили поставки сверхпроводящих стрендов для ИТЭР. Благодаря участию в проекте на заводе запущена новая - сложная и дорогостоящая - номенклатура изделий, что значительно повысило доходы предприятия.

Отчего пробуксовки?

Собственно, желанием овладеть технологиями во многом объясняется международная кооперация в проекте. Ведь независимо от того, кто занимался разработкой или производством конкретной детали или конст-рукции, созданные технологии становятся общим для всех стран-участниц интеллектуальным продуктом и могут использоваться ими в других целях.

Правда, демократичные условия участия и отсутствие общего бюджета проекта обернулись тем, что не все справляются со своими обязательствами в срок. Начались задержки и разногласия. И если к России никаких претензий нет, она - самая обязательная сторона в проекте, то в той же Европе наметилось заметное отставание.

Сдвинулись и намеченные поначалу сроки. Получить первую плазму к 2020 г., а первую энергию в сети - к 2027 г. уже нереально. Конечно, во многом это объясняется новаторством проекта - никто в мире ничего подобного преж-де не делал. И естественно, что жизнь вносит в бумажные расчёты свои корректировки. Но, с другой стороны, есть и элементарная необязательность. Исключить её намерен новый генеральный директор проекта Бернар Биго . По его словам, к концу этого года должен быть утверждён скорректированный график и пересмотрена система управления проектом. Он не исключает, что какие-то работы могут быть перераспределены между участниками.

«Мы думали, что соблюдать поставленные сроки получится просто благодаря добросовест-ности и добрым намерениям. Теперь поняли, что без строгого менеджмента ничего не выйдет. Но речь не о том, кто кем будет управлять, - мы должны научиться работать сообща», - говорит Б. Биго.

Зачем мечтать?

Новый гендиректор - из тех учёных, которые не просто верят в проект, но убеждены в его успехе. «Нет «плана Б», нет альтернативы, - считает он. - Мы можем вносить корректировки. Но это уже - реальная история».

Реальностью называют проект и сотни наших учёных и специалистов. А как же ещё? Ведь в организации ИТЭР пока ничего, кроме офисного здания и стройплощадки, нет. Но в наших росатомовских НИИ и на его предприятиях, а также в других организациях и компаниях, задействованных в проекте, - есть. Уже сделали сверхпроводники, выпустили невиданные доселе кабели, где сотни скрученных проводов помещены в оболочку из меди и стали, приступили к намотке катушек. Недавно в питерском НИИЭФА прошли успешные испытания прототипа резисторов для быст-рого вывода энергии из обмоток магнитной системы, а в Нижнем Новгороде в НПП «Гиком» - испытания прототипа гиротронного комплекса для генерации тока и нагрева плазмы. В институте ТРИНИТИ обрели реальные черты алмазные детекторы для вертикальной нейтронной камеры.

Однако реальность и мечта в ИТЭР неотделимы друг от друга. Учёным и специалистам, увлечённым своей работой, проект не просто открыл новые перспективы - он их одухотворил. Евгений Вещев, специалист по диагностике, вспоминает, как, будучи студентом МИФИ, впервые увидел токамак и прослушал лекцию про перспективы термоядерной энергетики . Он был просто окрылён, узнав о проекте, и подумал: «Как это здорово - быть причастным к такому важному для человечества делу!» И теперь счастлив, потому что каждый день вносит в него свою лепту.

«Мечты могут быть затратными - как миссия «Аполлон» или программы NASA, - с воодушевлением говорит Марк Хендерссон, руководитель секции электронного циклотрона . - Но мы должны мечтать! В том числе о новом ядерном синтезе, который можно назвать Прометеем сегодняшнего дня».

Мнение эксперта:

Сергей Кириенко, генеральный директор Госкорпорации «Рос-атом» :

Необходимо объединить усилия всех участников для того, чтобы обеспечить развитие нашей отрасли, сформировать новое поколение в ней, объединив при этом и деньги, и время, и главное - опыт.

Мы все должны объединить усилия для реализации таких международных проектов, как ИНПРО под эгидой МАГАТЭ или осуществляемый во Франции проект ИТЭР.

Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта. «Лента.ру» посетила презентацию ИТЭР и поговорила с одним из участников проекта.

ИТЭР (ITER, International Thermonuclear Experimental Reactor - Международный термоядерный экспериментальный реактор) - проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

Об ИТЭР

Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения - вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа - JET - объем равен ста кубическим метрам.

Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров - под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек - в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина - около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.

Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.

Токамак

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (то роидальная ка мера с ма гнитными к атушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода - дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

Фото: НИЦ «Курчатовский институт»/ nrcki.ru

Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.

Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом , и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.

Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные из которых находятся в Европе, Японии, США и России.

Изображение: Rfassbind/ wikipedia.org

Управление ИТЭР

На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты... поживем - увидим.

Проект скорее носит исследовательский характер?

Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

А есть пример?

Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то - Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше... Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

А чем занимается именно ваша группа в ИТЭР?

У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор - уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

В каких отраслях промышленности могут использоваться эти детекторы?

В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

Что именно делают детекторы, что они измеряют?

Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

Какие характеристики нейтронов они измеряют?

Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

У вас в лаборатории есть действующий реактор?

Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя - это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете - мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

Материал из Юнциклопедии


В науке уже много лет разрабатывается проблема использования для целей энергетики термоядерных реакций как гигантских источников энергии. Созданы уникальные термоядерные установки - сложнейшие технические устройства, предназначенные для изучения возможности получения колоссальной энергии, которая выделяется пока лишь при взрыве водородной бомбы. Ученые стремятся научиться контролировать ход термоядерной реакции - реакции соединения (синтеза) изотопов водорода (дейтерия и трития) с образованием ядер гелия при высоких температурах, чтобы использовать выделяющуюся при этом энергию в мирных целях, на благо людям. О величине термоядерной энергии можно судить по такому сравнению: вступление в синтез 1 г изотопов водорода эквивалентно сгоранию 10 т бензина.

Для осуществления термоядерной реакции необходимо несколько условий. Температура в зоне, где происходит термоядерный синтез, должна быть примерно 100 млн. градусов. При такой температуре реагирующее вещество превращается в плазму - ионизированный газ, смесь положительных ионов и электронов. Необходимо также, чтобы при синтезе выделялось больше энергии, чем затрачивается на нагрев вещества, или, чточбы рождающиеся при синтезе быстрые частицы сами поддерживали требуемую температуру горючего. Для этого нужно, чтобы вступающее в синтез вещество было надежно теплоизолировано от окружающей и, естественно, холодной среды, т. е., чтобы время удержания энергии было достаточно велико (не менее 1 с). Время удержания энергии зависит от плотности реагирующего вещества: в зоне реакции следует поддерживать плотность плазмы не ниже 100 тыс. млрд. частиц в 1 см3.

Наиболее близко к условиям, требуемым для управляемого термоядерного синтеза, удалось подойти с помощью установок Токамак, созданных советскими физиками. Название установки произошло от сокращения слов: Тороидальная КАмера с МАгнитными Катушками. На рабочую вакуумную камеру Токамака, тороидальную (кругообразную) форму (см. рис.), надеты катушки, создающие сильное (несколько тесла) тороидальное магнитное поле. Камера с катушками ставится на железное ярмо и служит как бы вторичным витком трансформатора. При изменении тока в первичной обмотке, намотанной на ярмо, в камере образуется вихревое электрическое поле, происходит пробой и ионизация рабочего газа, заполняющего камеру, и возникает тороидальный плазменный шнур с продольным электрическим током. Этот ток нагревает плазму, а его магнитное поле вместе с полем катушек теплоизолирует плазму от стенок.

Противоположно направленные токи отталкиваются, поэтому плазменный виток стремится увеличить свой диаметр. Для компенсации этого отталкивания в Токамаке имеются особые управляющие витки, создающие магнитное поле, перпендикулярное плоскости тора.

В результате взаимодействия этого поля с током в шнуре возникает радиальная сила, удерживающая плазменный виток от расширения. Ток в витках регулируется специальной автоматической системой, контролирующей движение плазменного шнура.

Электрическое сопротивление плазмы с ростом температуры не растет, как у других веществ, а падает, и при заданном токе уменьшается нагрев шнура. Если же увеличить ток в Токамаке выше некоторого предела, то магнитное поле тока станет слишком большим по сравнению с тороидальным полем катушек, шнур начнет извиваться и выбросится на стенку. Поэтому для нагрева плазмы до температуры выше 10 млн. градусов в Токамаке используют дополнительные методы нагрева с помощью инжекции (ввода) в плазму пучков быстрых атомов или введения в камеру высокочастотных электромагнитных волн. В этом случае плазму в Токамаке уже удалось нагреть до 70 млн. градусов.

Большой вклад в разработку систем Токамак внес коллектив советских ученых под руководством академика Л. А. Арцимовича, который первым начал проводить экспериментальные исследования этих установок в Институте атомной энергии имени И. В. Курчатова. В 1968 г. в этом институте была впервые получена физическая термоядерная реакция. С начала 1970-х гг. системы Токамак стали играть ведущую роль в исследованиях по управляемому синтезу и в других странах мира - США, Франции, Италии, Великобритании, ФРГ, Японии. В нашей стране создана крупнейшая установка этого типа - Тока- мак-10.

Овладение термоядерной энергией - важная задача науки и техники. Трудно даже представить, как изменятся с построением и использованием термоядерных электростанций вся энергетика, энергетические системы, целые отрасли производства.

С целью достижения условий, необходимых для протекания . Плазма в токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора , являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

Токамак-реактор на данный момент разрабатывается в рамках международного научного проекта ITER .

История

Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза. А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем. Одновременно эта же идея была предложена американскими учёными, но «забыта» до 1970-х годов .

В настоящее время токамак считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза .

Устройство

Токамак представляет собой тороидальную вакуумную камеру , на которую намотаны катушки для создания тороидального магнитного поля . Из вакуумной камеры сначала откачивают воздух, а затем заполняют её смесью дейтерия и трития . Затем с помощью индуктора в камере создают вихревое электрическое поле . Индуктор представляет собой первичную обмотку большого трансформатора , в котором камера токамака является вторичной обмоткой. Электрическое поле вызывает протекание тока и зажигание в камере плазмы .

Протекающий через плазму ток выполняет две задачи:

  • нагревает плазму так же, как нагревал бы любой другой проводник (омический нагрев);
  • создаёт вокруг себя магнитное поле. Это магнитное поле называется полоидальным (то есть направленное вдоль линий, проходящих через полюсы сферической системы координат).

Магнитное поле сжимает протекающий через плазму ток. В результате образуется конфигурация, в которой винтовые магнитные силовые линии «обвивают» плазменный шнур. При этом шаг при вращении в тороидальном направлении не совпадает с шагом в полоидальном направлении. Магнитные линии оказываются незамкнутыми, они бесконечно много раз закручиваются вокруг тора, образуя так называемые «магнитные поверхности» тороидальной формы.

Наличие полоидального поля необходимо для стабильного удержания плазмы в такой системе. Так как оно создается за счёт увеличения тока в индукторе, а он не может быть бесконечным, время стабильного существования плазмы в классическом токамаке пока ограничено несколькими секундами. Для преодоления этого ограничения разработаны дополнительные способы поддержания тока. Для этого может быть использована инжекция в плазму ускоренных нейтральных атомов дейтерия или трития или микроволновое излучение .

Кроме тороидальных катушек для управления плазменным шнуром необходимы дополнительные катушки полоидального поля . Они представляют собой кольцевые витки вокруг вертикальной оси камеры токамака.

Одного только нагрева за счёт протекания тока недостаточно для нагрева плазмы до температуры, необходимой для осуществления термоядерной реакции. Для дополнительного нагрева используется микроволновое излучение на так называемых резонансных частотах (например, совпадающих с циклотронной частотой либо электронов , либо ионов) или инжекция быстрых нейтральных атомов.

Токамаки и их характеристики

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

СССР и Россия

Казахстан

  • Казахстанский Токамак материаловедческий (КТМ) - это экспериментальная термоядерная установка для исследований и испытаний материалов в режимах энергетических нагрузок, близких к

Токамак Т – 15 - тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза. Была разработана крупным ученым, специалистом в области термоядерной энергетики В.А. Глухих (ныне – академик РАН), выпускником Томского политехнического института (ТПУ) 1952г.

Токамак

Токамак - (сокр. от «тороидальная камера с магнитными катушками») - замкнутая магнитная ловушка, имеющая форму тора и предназначенная для создания и удержания высокотемпературной плазмы. Т. предложен в связи с проблемой управляемого термоядерного синтеза (УТС). Плазма в токамаке удерживается не стенками камеры, которые не способны выдержать необходимую для термоядерных реакций температуру, а специально создаваемым комбинированным магнитным полем - тороидальным внешним и полоидальным полем тока, протекающего по плазменному шнуру. По сравнению с другими установками, использующими магнитное поле для удержания плазмы, использование электрического тока является главной особенностью токамака. Ток в плазме обеспечивает разогрев плазмы и удержание равновесия плазменного шнура в вакуумной камере. Этим токамак, в частности, отличается от стелларатора, являющегося одной из альтернативных схем удержания, в котором и тороидальное, и полоидальное поля создаются с помощью внешних магнитных катушек.

Разработка Т-15

В 1974 году В.А. Глухих назначается директором НИИЭФА имени Д.В. Ефремова. Создаваемые здесь уникальные электрофизические установки к тому времени уже стали олицетворением института и получили достойное признание у мирового научного сообщества. В этот период начал разрабатываться проект гигантского ускорительно-накопительного комплекса для Института физики высоких энергий на энергию 2 ТэВ. Активно развивалась техника мощных лазеров специального назначения, ускорители и лазеры для промышленности и медицины. Задачи и объем работ для их реализации были настолько велики, что потребовалось бурное развитие экспериментальной и производственной баз. Начался новый этап строительства института. За короткий срок площади удвоились. Развернулось строительство филиала НИИЭФА в городе Сосновый Бор.

В 1979 году начались первые расчетно-конструкторские работы по созданию установки Т-15, каждая из систем которой уникальна. В проекте участвовали десятки коллективов. В мировой практике отсутствовал опыт создания таких установок, что потребовало выполнения значительного объема научно-исследовательских работ. Институт выполнял роль главного конструктора. Особого внимания заслуживала электромагнитная система (ЭМС) со сверхпроводимой обмоткой тороидального поля. Такая система разрабатывалась впервые в мире.

Одновременно с началом проектирования установки Т-15 начались работы по созданию установки ТСП – токамака нового типа. При постановке задачи учитывались неопределенность знаний о свойствах плазмы с реакторными параметрами и необходимость проведения сравнительно недорогого демонстрационного эксперимента в токамаке с термоядерной температурой плазмы. Первые же проработки показали, что физические и технические параметры ряда систем новой установки беспрецедентны для современной техники и приближаются к предельно допустимым. Обе эти установки (Т-15, ТСП) были созданы, но в дальнейшем из-за резкого сокращения финансирования на научные исследования потенциал установок Т-15 и ТСП оказался недостаточно реализованным.

Экспериментальная термоядерная установка Токамак Т-15 является одной из крупнейших в мире экспериментальных термоядерных установок.

Уникальность установке придает наличие крупнейшего в мире сверхпроводникового ниобий-оловянного тороидального магнита.

Эксперименты на токамаке Т-15 внесли значительный вклад в развитие технологий использования сверхпроводящих токонесущих конструкций, развитие диагностических методов и мощного комплекса дополнительного нагрева, включая СВЧ нагрев и нагрев пучками нейтральных атомов.

В.А. Глухих

Васи́лий Андре́евич Глухи́х (род. 1929, д. Большая-Каменная, Курганская область) - российский учёный, специалист в области термоядерной энергетики. Доктор технических наук, профессор, академик РАН. Научный руководитель НИИ электрофизической аппаратуры им. Д. В. Ефремова

Окончил физико-технический факультет Томского политехнического института (ТПУ) в 1952г. С 1953г. работает в научно-исследовательском институте электрофизической аппаратуры имени Д.В. Ефремова (НПО «Электрофизика», г. Санкт-Петербург). В течение длительного времени Глухих осуществляет научное руководство установками для исследований в области управляемого термоядерного синтеза, активно развивает направления, связанные с исследованием и разработкой мощных лазеров и энергетических систем для их накачки. В 1993г. В.А. Глухих был избран Почетным профессором ТПУ.







2024 © styletrack.ru.