Из лу че ния. Что такое излучение в физике? Определение, особенности, применение излучения в физике. Что такое тепловое излучение в физике. Физика возникновения излучения


§ 1. Тепловое излучение

В процессе исследования излучения нагретых тел было установлено, что любое нагретое тело излучает электромагнитные волны (свет) в широком диапазоне частот. Следовательно, тепловое излучение – это излучение электромагнитных волн за счет внутренней энергии тела.

Тепловое излучение имеет место при любой температуре. Однако при невысоких температурах излучаются практически лишь длинные (инфракрасные) электромагнитные волны.

Ведем следующие величины, характеризующие излучение и поглощение энергии телами:

    энергетическая светимость R (T ) – это энергия W, испускаемая 1 м 2 поверхности светящегося тела за 1 с.

Вт/м 2 .

    испускательная способность тела r (λ,Т) (или спектральная плотность энергетической светимости) – это энергия в единичном интервале длин волн, испускаемая 1 м 2 поверхности светящегося тела за 1 с.

.
.

Здесь
– это энергия излучения с длинами волн от λ до
.

Связь между интегральной энергетической светимостью и спектральной плотность энергетической светимости задаётся следующим соотношением:

.


.

Экспериментально было установлено, что отношение испускательной и поглощательной способностей не зависит от природы тела. Это означает, что оно является для всех тел одной и той же (универсальной) функцией длины волны (частоты) и температуры. Этот эмпирический закон открыт Кирхгофом и носит его имя.

Закон Кирхгофа: отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же (универсальной) функцией длины волны (частоты) и температуры:

.

Тело, которое при любой температуре полностью поглощает все падающее на него излучение, называется абсолютно черным телом а.ч.т.

Поглощательная способность абсолютно черного тела а а.ч.т. (λ,Т) равна единице. Это означает, что универсальная функция Кирхгофа
тождественна испускательной способности абсолютно черного тела
. Таким образом, для решения задачи теплового излучения необходимо было установить вид функции Кирхгофа или испускательной способности абсолютно чёрного тела.

Анализируя экспериментальные данные и применяя методы термодинамики австрийские физики Йозеф Стефан (1835 – 1893) и Людвиг Больцман (1844-1906) в 1879 году частично решили задачу излучения а.ч.т. Они получили формулу для определения энергетической светимости а.ч.т. – R ачт (T). Согласно закону Стефана-Больцмана

,
.

В
1896-м году немецкие физики во главе с Вильгельмом Вином создали суперсовременную по тем временам экспериментальную установку для исследования распределения интенсивности излучения по длинам волн (частотам) в спектре теплового излучения абсолютно черного тела. Эксперименты, выполненные на этой установке: во-первых, подтвердили результат, полученный австрийскими физиками Й.Стефаном и Л.Больцманом; во-вторых, были полученны графики распределения интенсивности теплового излучения по длинам волн. Они были удивительно похожи на полученные ранее Дж. Максвеллом кривые распределения молекул газа, находящегося в закрытом объеме, по величинам скоростей.

Теоретическое объяснение полученных графиков стало центральной проблемой конца 90-х годов 19-го века.

Английские классические физики лорд Рэлей (1842-1919) и сэр Джеймс Джинс (1877-1946) применили к тепловому излучению методы статистической физики (воспользовались классическим законом о равнораспределении энергии по степеням свободы). Рэлей и Джинс применили метод статистической физики к волнам подобно тому, как Максвелл применил его к равновесному ансамблю хаотически движущихся в замкнутой полости частиц. Они предположили, что на каждое электромагнитное колебание приходится в среднем энергия равная kT ( на электрическую энергию и на магнитную энергию),. Исходя из этих соображений, они получили следующую формулу для испускательной способности а.ч.т.:

.

Э
та формула хорошо описывала ход экспериментальной зависимости при больших длинах волн (на низких частотах). Но для малых длин волн (высокий частот или в ультрафиолетовой области спектра) классическая теория Рэлея и Джинса предсказывала бесконечный рост интенсивности излучения. Этот эффект получил название ультрафиолетовой катастрофы.

Предположив, что стоячей электромагнитной волне любой частоты соответствует одна и та же энергия, Рэлей и Джинс и при этом пренебрегли тем, что при повышении температуры вклад в излучение дают все более и более высокие частоты. Естественно, что принятая ими модель должна была привести к бесконечному росту энергии излучения на высоких частотах. Ультрафиолетовая катастрофа стала серьезным парадоксом классической физики.

С
ледующую попытку получения формулы зависимости испускательной способности а.ч.т. от длин волн предпринял Вин. С помощью методов классической термодинамики и электродинамики Вину удалось вывести соотношение, графическое изображение которого удовлетворительно совпадало с коротковолновой (высокочастотной) частью полученных в эксперименте данных, но абсолютно расходилось с результатами опытов для больших длин волн (низких частот).

.

Из этой формулы было получено соотношение, связывающее ту длину волны
, которой соответствует максимум интенсивности излучения, и абсолютную температуру тела Т (закон смещения Вина):

,
.

Это соответствовало полученным Вином экспериментальным результатам, из которых следовало, что с ростом температуры максимум интенсивности излучения смещается в сторону более коротких волн.

Но формулы, описывающей всю кривую, не было.

Тогда за решение возникшей проблемы взялся Макс Планк (1858-1947), который в это время работал в департаменте физики в Берлинском институте Кайзера Вильгельма. Планк был очень консервативным членом Прусской Академии, всецело поглощенным методами классической физики. Он был страстно увлечен термодинамикой. Практически, начиная с момента защиты диссертации в 1879-м году, и почти до конца века целых двадцать лет подряд Планк занимался изучением проблем, связанных с законами термодинамики. Планк понимал, что классическая электродинамика не может дать ответа на вопрос о том, как распределена энергия равновесного излучения по длинам волн (частотам). Возникшая проблема относилась к сфере термодинамики. Планк исследовал необратимый процесс установления равновесия между веществом и излучением (светом) . Чтобы добиться согласования теории с опытом, Планк отступил от классической теории лишь в одном пункте: он принял гипотезу о том, что излучение света происходит порциями (квантами) . Принятая Планком гипотеза позволила получить для теплового излучения такое распределение энергии по спектру, которое соответствовало эксперименту.

.

14 декабря 1900-го года Планк представил свои результаты Берлинскому физическому обществу. Так родилась квантовая физика.

Квант энергии излучения, введенный Планком в физику, оказался пропорциональным частоте излучения (и обратно пропорционален длине волны):

.

– универсальная постоянная, называемая теперь постоянной Планка. Она равна:
.

Свет представляет собой сложный материальный объект, который обладает как волновыми, так и корпускулярными свойствами.

Волновые параметры – длина волны , частота света и волновое число .

Корпускулярные характеристики – энергия и импульс .

Волновые параметры света связаны с его корпускулярными характеристиками с помощью постоянной Планка:

.

Здесь
и
– волновое число.

Постоянной Планка принадлежит фундаментальная роль в физике. Эта размерная константа позволяет количественно оценить, насколько при описании каждой конкретной физической системы существенны квантовые эффекты.

Когда по условиям физической задачи постоянную Планка можно считать пренебрежимо малой величиной, достаточно классического (не квантового) описания.

Сегодня поговорим о том, что такое излучение в физике. Расскажем о природе электронных переходов и приведем электромагнитную шкалу.

Божество и атом

Строение вещества стало предметом интереса ученых более двух тысяч лет назад. Древнегреческие философы задавались вопросами, чем воздух отличается от огня, а земля от воды, почему мрамор белый, а уголь черный. Они создавали сложные системы взаимозависимых компонентов, опровергали или поддерживали друг друга. А самые непонятные явления, например, удар молнии или восход солнца приписывали действию богов.

Однажды, долгие годы наблюдая за ступенями храма, один ученый заметил: каждая нога, встающая на камень, уносит крошечную частичку вещества. Со временем мрамор менял форму, прогибался посередине. Имя этого ученого - Левкипп, и он назвал мельчайшие частицы атомами, неделимыми. С этого начался путь к изучению того, что такое излучение в физике.

Пасха и свет

Затем настали темные времена, науку забросили. Всех, кто пытался изучать силы природы, окрестили ведьмами и колдунами. Но, как ни странно, именно религия дала толчок к дальнейшему развитию науки. Исследование о том, что такое излучение в физике, началось с астрономии.

Время празднования Пасхи вычислялось в те времена каждый раз по-разному. Сложная система взаимоотношений между днем весеннего равноденствия, 26-дневным лунным циклом и 7-дневной неделей не позволяла составлять таблицы дат для празднования Пасхи более чем на пару лет. Но церкви надо было все планировать заранее. Поэтому Папа Римский Лев X заказал составление более точных таблиц. Это потребовало тщательно наблюдения за движением Луны, звезд и Солнца. И в конце концов Николай Коперник понял: Земля не плоская и не центр вселенной. Планета - шар, который вращается вокруг Солнца. А Луна - сфера на орбите Земли. Конечно, можно спросить: «Какое отношение все это имеет к тому, что такое излучение в физике?» Сейчас раскроем.

Овал и луч

Позже Кеплер дополнил систему Коперника, установив, что планеты движутся по овальным орбитам, и движение это неравномерное. Но именно тот первый шаг привил человечеству интерес к астрономии. А там недалеко было и до вопросов: «Что такое звезда?», «Почему люди видят ее лучи?» и «Чем одно светило отличается от другого?». Но сначала придется перейти от огромных объектов к самым маленьким. И затем подойдем к излучению, понятию в физике.

Атом и изюм

В конце девятнадцатого века накопилось достаточно знаний о малейших химических единицах вещества - атомах. Было известно, что они электронейтральны, но содержат как положительно, так и отрицательно заряженные элементы.

Предположений выдвигалось множество: и что положительные заряды распределены в отрицательном поле, как изюм в булке, и что атом - это капля из разнородно заряженных жидких частей. Но все прояснил опыт Резерфорда. Он доказал, что в центре атома находится положительное тяжелое ядро, а вокруг него располагаются легкие отрицательные электроны. И конфигурация оболочек для каждого атома своя. Тут-то и кроются особенности излучения в физике электронных переходов.

Бор и орбита

Когда ученые выяснили, что легкие отрицательные части атома - это электроны, встал другой вопрос - почему они не падают на ядро. Ведь, согласно теории Максвелла, любой движущийся заряд излучает, следовательно, теряет энергию. Но атомы существовали столько же, сколько вселенная, и не собирались аннигилировать. На выручку пришел Бор. Он постулировал, что электроны находятся на некоторых стационарных орбитах вокруг атомного ядра, и находиться могут только на них. Переход электрона между орбитами осуществляется рывком с поглощением или испусканием энергии. Этой энергией может быть, например, квант света. По сути, мы сейчас изложили определение излучения в физике элементарных частиц.

Водород и фотография

Изначально технология фотографии была придумана как коммерческий проект. Люди хотели остаться в веках, но заказать портрет у художника было не каждому по карману. А фотографии были дешевыми и не требовали таких больших вложений. Потом искусство стекла и нитрата серебра поставило себе на службу военное дело. А затем и наука стала пользоваться преимуществами светочувствительных материалов.

В первую очередь фотографировать стали спектры. Уже давно было известно, что горячий водород испускает конкретные линии. Расстояние между ними подчинялось определенному закону. Но вот спектр гелия был более сложным: он содержал тот же набор линий, что и водород, и еще один. Вторая серия уже не подчинялась закону, выведенному для первой серии. Тут на помощь пришла теория Бора.

Выяснилось, что электрон в атоме водорода один, и он может переходить из всех высших возбужденных орбит на одну нижнюю. Это и была первая серия линий. Более тяжелые атомы устроены сложнее.

Линза, решетка, спектр

Таким образом было положено начало применению излучения в физике. Спектральный анализ - один из самых мощных и надежных способов определения состава, количества и структуры вещества.

  1. Электронный эмиссионный спектр расскажет, что содержится в объекте и каков процент того или иного компонента. Этот способ используют абсолютно все области науки: от биологии и медицины до квантовой физики.
  2. Спектр поглощения расскажет, какие ионы и на каких позициях присутствуют в решетке твердого тела.
  3. Вращательный спектр продемонстрирует, насколько далеко находятся молекулы внутри атома, сколько и каких связей присутствует у каждого элемента.

А уж диапазонов применения электромагнитного излучения и не счесть:

  • радиоволны исследуют структуру очень далеких объектов и недра планет;
  • тепловое излучение расскажет об энергии процессов;
  • видимый свет подскажет, в каких направлениях лежат самые яркие звезды;
  • ультрафиолетовые лучи дадут понять, что происходят высокоэнергетические взаимодействия;
  • рентгеновский спектр сам по себе позволяет людям изучать структуру вещества (в том числе и человеческого тела), а наличие этих лучей в космических объектах известят ученых, что в фокусе телескопа нейтронная звезда, вспышка сверхновой или черная дыра.

Абсолютно черное тело

Но есть особый раздел, который изучает, что такое тепловое излучение в физике. В отличие от атомного, тепловое испускание света имеет непрерывный спектр. И наилучшим модельным объектом для расчетов является абсолютно черное тело. Это такой объект, который «ловит» весь попадающий на него свет, но не выпускает обратно. Как ни странно, абсолютно черное тело излучает, и максимум длины волны будет зависеть от температуры модели. В классической физике тепловое излучение порождало парадокс Выходило, что любая нагретая вещь должна была излучать все больше и больше энергии, пока в ультрафиолетовом диапазоне ее энергия не разрушила бы вселенную.

Разрешить парадокс смог Макс Планк. В формулу излучения он ввел новую величину, квант. Не придавая ей особенного физического смысла, он открыл целый мир. Сейчас квантование величин - основа современной науки. Ученые поняли, что поля и явления состоят из неделимых элементов, квантов. Это привело к более глубоким исследованиям материи. Например, современный мир принадлежит полупроводникам. Раньше все было просто: металл проводит ток, остальные вещества - диэлектрики. А вещества типа кремния и германия (как раз полупроводники) ведут себя непонятно по отношению к электричеству. Чтобы научиться управлять их свойствами, потребовалось создать целую теорию и рассчитать все возможности p-n переходов.

Ионизирующее излучение (далее - ИИ) - это излучение, взаимодействие которого с веществом приводит к ионизации атомов и молекул, т.е. это взаимодействие приводит к возбуждению атома и отрыву отдельных электронов (отрицательно заряженных частиц) из атомных оболочек. В результате, лишенный одного или нескольких электронов, атом превращается в положительно заряженный ион - происходит первичная ионизация. К ИИ относят электромагнитное излучение (гамма-излучение) и потоки заряженных и нейтральных частиц - корпускулярное излучение (альфа-излучение, бета-излучение, а также нейтронное излучение).

Альфа-излучение относится к корпускулярным излучениям. Это поток тяжелых положительно заряженных а-частиц (ядер атомов гелия), возникающее в результате распада атомов тяжелых элементов, таких как уран, радий и торий. Поскольку частицы тяжелые, то пробег альфа-частиц в веществе (то есть путь, на котором они производят ионизацию) оказывается очень коротким: сотые доли миллиметра в биологических средах, 2,5—8 см в воздухе. Таким образом, задержать эти частицы способен обычный лист бумаги или внешний омертвевший слой кожи.

Однако вещества, испускающие альфа-частицы, являются долгоживущими. В результате попадания таких веществ внутрь организма с пищей, воздухом или через ранения, они разносятся по телу током крови, депонируются в органах, отвечающих за обмен веществ и защиту организма (например, селезенка или лимфатические узлы), вызывая, таким образом, внутреннее облучение организма. Опасность такого внутреннего облучения организма высока, т.к. эти альфа-частицы создают очень большое число ионов (до нескольких тысяч пар ионов на 1 микрон пути в тканях). Ионизация, в свою очередь, обуславливает ряд особенностей тех химических реакций, которые протекают в веществе, в частности, в живой ткани (образование сильных окислителей, свободного водорода и кислорода и др.).

Бета-излучение (бета-лучи, или поток бета-частиц) также относится к корпускулярному типу излучения. Это поток электронов (β--излучение, или, чаще всего, просто β -излучение) или позитронов (β+-излучение), испускаемых при радиоактивном бета-распаде ядер некоторых атомов. Электроны или позитроны образуются в ядре при превращении нейтрона в протон или протона в нейтрон соответственно.

Электроны значительно меньше альфа-частиц и могут проникать вглубь вещества (тела) на 10-15 сантиметров (ср. с сотыми долями миллиметра у а-частиц). При прохождении через вещество бета-излучение взаимодействует с электронами и ядрами его атомов, расходуя на это свою энергию и замедляя движение вплоть до полной остановки. Благодаря таким свойствам для защиты от бета-излучения достаточно иметь соответствующей толщины экран из органического стекла. На этих же свойствах основано применение бета-излучения в медицине для поверхностной, внутритканевой и внутриполостной лучевой терапии.

Нейтронное излучение - еще один вид корпускулярного типа излучений. Нейтронное излучение представляет собой поток нейтронов (элементарных частиц, не имеющих электрического заряда). Нейтроны не оказывают ионизирующего действия, однако весьма значительный ионизирующий эффект происходит за счет упругого и неупругого рассеяния на ядрах вещества.

Облучаемые нейтронами вещества могут приобретать радиоактивные свойства, то есть получать так называемую наведенную радиоактивность. Нейтронное излучение образуется при работе ускорителей элементарных частиц, в ядерных реакторах, промышленных и лабораторных установках, при ядерных взрывах и т. д. Нейтронное излучение обладает наибольшей проникающей способностью. Лучшими для защиты от нейтронного излучения являются водородсодержащие материалы.

Гамма излучение и рентгеновское излучение относятся к электромагнитным излучениям.

Принципиальная разница между двумя этими видами излучения заключается в механизме их возникновения. Рентгеновское излучение - внеядерного происхождения, гамма излучение - продукт распада ядер.

Рентгеновское излучение, открыто в 1895 году физиком Рентгеном. Это невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка от - от 10 -12 до 10 -7 . Источник рентгеновских лучей - рентгеновская трубка, некоторые радионуклиды (например, бета-излучатели), ускорители и накопители электронов (синхротронное излучение).

В рентгеновской трубке есть два электрода - катод и анод (отрицательный и положительный электроды соответственно). При нагреве катода происходит электронная эмиссия (явление испускания электронов поверхностью твёрдого тела или жидкости). Электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода, где происходит их резкое торможение, вследствие чего возникает рентгеновское излучение. Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это одно его из свойств, основное для медицины - то, что оно является проникающим излучением и соответственно пациента можно просвечивать с его помощью, а т.к. разные по плотности ткани по-разному поглощают рентгеновское излучение - то мы можем диагностировать на самой ранней стадии многие виды заболеваний внутренних органов.

Гамма излучение имеет внутриядерное происхождение. Оно возникает при распаде радиоактивных ядер, переходе ядер из возбужденного состояния в основное, при взаимодействии быстрых заряженных частиц с веществом, аннигиляции электронно-позитронных пар и т.д.

Высокая проникающая способность гамма-излучения объясняется малой длиной волны. Для ослабления потока гамма-излучения используются вещества, отличающиеся значительным массовым числом (свинец, вольфрам, уран и др.) и всевозможные составы высокой плотности (различные бетоны с наполнителями из металла).

Излучение - это физический процесс, результатом которого является передача энергии с помощью электромагнитных волн. Обратный излучению процесс называется поглощением. Рассмотрим этот вопрос подробнее, а также приведем примеры излучения в быту и природе.

Физика возникновения излучения

Любое тело состоит из атомов, которые, в свою очередь, образованы ядрами, заряженными положительно, и электронами, которые образуют электронные оболочки вокруг ядер и заряжены отрицательно. Атомы устроены таким образом, что они могут находиться в разных энергетических состояниях, то есть обладать как большей, так и меньшей энергией. Когда атом имеет наименьшую энергию, то говорят о его основном состоянии, любое другое энергетическое состояние атома называется возбужденным.

Существование различных энергетических состояний атома связано с тем, что его электроны могут располагаться на тех или иных энергетических уровнях. Когда электрон переходит с более высокого уровня на более низкий, то атом теряет энергию, которую он излучает в окружающее пространство в виде фотона - частицы-носителя электромагнитных волн. Наоборот, переход электрона с более низкого на более высокий уровень сопровождается поглощением фотона.

Перевести электрон атома на более высокий энергетический уровень можно несколькими способами, которые предполагают передачу энергии. Это может быть как воздействие на рассматриваемый атом внешнего электромагнитного излучения, так и передача ему энергии механическим или электрическим способами. Кроме того, атомы могут получать, а затем выделять энергию в результате химических реакций.

Электромагнитный спектр

Прежде чем переходить к примерам излучения в физике, необходимо отметить, что каждый атом испускает определенные порции энергии. Это происходит потому, что состояния, в которых может находиться электрон в атоме, являются не произвольными, а строго определенными. Соответственно переход между этими состояниями сопровождается излучением определенного количества энергии.

Из атомной физики известно, что фотоны, порождаемые в результате электронных переходов в атоме, обладают энергией, которая прямо пропорциональна их частоте колебаний и обратно пропорциональна длине волны (фотон - это электромагнитная волна, которая характеризуется скоростью распространения, длиной и частотой). Поскольку атом вещества может испускать только определенный набор энергий, значит, длины волн испущенных фотонов тоже являются конкретными. Набор всех этих длин называется электромагнитным спектром.

Если длина волны фотона лежит между 390 нм и 750 нм, то говорят о видимом свете, поскольку его способен воспринимать человек своими глазами, если длина волны меньше 390 нм, то такие электромагнитные волны обладают большой энергией и называются ультрафиолетовым, рентгеновским или гамма-излучением. Для длин больше 750 нм характерна небольшая энергия фотонов, они носят название инфракрасного, микро- или радиоизлучения.

Тепловое излучение тел

Всякое тело, которое имеет некоторую отличную от абсолютного нуля температуру, излучает энергию, в этом случае говорят о тепловом или температурном излучении. При этом температура определяет как электромагнитный спектр теплового излучения, так и количество испускаемой телом энергии. Чем больше температура, тем большую энергию излучает тело в окружающее пространство, и тем сильнее его электромагнитный спектр смещается в высокочастотную область. Процессы теплового излучения описываются законами Стефана-Больцмана, Планка и Вина.

Примеры излучения в быту

Как выше было сказано, энергию в виде электромагнитных волн излучает абсолютно любое тело, однако видеть невооруженным глазом этот процесс можно не всегда, поскольку температуры окружающих нас тел, как правило, слишком маленькие, поэтому их спектр лежит в низкочастотной невидимой для человека области.

Ярким примером излучения в видимом диапазоне является электрическая лампа накаливания. Проходя по спирали, электрический ток разогревает вольфрамовую нить до 3000 К. Такая высокая температура приводит к тому, что нить начинает испускать электромагнитные волны, максимум которых приходится на длинноволновую часть видимого спектра.

Еще один пример излучения в быту - микроволновая печь, которая испускает микроволны, невидимые для человеческого глаза. Эти волны поглощаются объектами, содержащими воду, тем самым увеличивая их кинетическую энергию и, как следствие, температуру.

Наконец, примером излучения в быту в инфракрасном диапазоне является радиатор батареи отопления. Его излучения мы не видим, но чувствуем это тепло.

Природные излучающие объекты

Пожалуй, самым ярким примером излучения в природе является наша звезда - Солнце. Температура на поверхности Солнца около поэтому его максимум излучения приходится на длину волны 475 нм, то есть лежит внутри видимого спектра.

Солнце разогревает находящиеся вокруг него планеты и их спутники, которые тоже начинают светиться. Здесь следует отличать отраженный свет и тепловое излучение. Так, нашу Землю можно видеть из космоса в виде голубого шара именно благодаря отраженному солнечному свету. Если же говорить о тепловом излучении планеты, то оно также имеет место, но лежит в области микроволнового спектра (около 10 мкм).

Помимо отраженного света, интересно привести еще один пример излучения в природе, который связан со сверчками. Испускаемый ими видимый свет никак не связан с тепловым излучением и является результатом химической реакции между кислородом воздуха и люциферином (вещество, содержащееся в клетках насекомых). Это явление носит название биолюминесценции.

краткое содержание других презентаций

«Электролиз растворов и расплавов» - Майкл Фарадей (1791 – 1867). Не допускать разбрызгивания электролита. Схемы процессов. Задачи урока: Электролиты – сложные вещества, расплавы и растворы которых проводят электрический ток. ГБОУ СОШ № 2046 г. Москва. Сu2+ - окисли-тель. Соли, щелочи, кислоты. Правила техники безопасности при работе на ПК. Правила техники безопасности. Процесс присоединения электронов ионами называется восстановлением. Катод. Тема у рока: «Электролиз расплавов и растворов бескислородных солей.

«Физика магнитного поля» - Поместив внутрь соленоида стальной стержень, мы получим простейший электромагнит. Приблизительно сосчитаем количество примагнитившихся гвоздиков. Рассмотрим магнитное поле проводника, свернутого в виде спирали. Метод силовых линий. Цели и задачи проекта: Около прямого провода расположена магнитная стрелка. Источник магнитного поля.

«Атомная энергия» - На подобных съездах решаются вопросы, связанные с монтажными работами на АЭС. Радиоактивные отходы образуются почти на всех стадиях ядерного цикла. На Сев. Конечно, от ядерной энергетики можно вообще отказаться. АЭС, ТЭЦ, ГЭС-современная цивилизация. Запорожская АЭС. Энергетика: «против».

«Физика света» - Подбор очков. Построение изображения в рассеивающей линзе. Телескоп зеркальный (рефлектор). Собирающая линза. Геометрическая оптика. Прямолинейностью распространения света объясняется образование тени. Солнечное затмение объясняется прямолинейным распространением света. Собирающие (а) и рассеивающие (б) линзы. Глаз человека. Распространение света в волоконном световоде.

«Электрические явления 8 класс» - Отталкиваются. Соприкосновение. Вещества. Процесс сообщения телу Электрического заряда g. Трение. Электроскоп электрометр. Приборы. Электрический заряд. 8 класс.Электрические явления МОУ Первомайская СОШ Хайруллина Галина Александровна. + ДВА рода зарядов -. Электрические явления начало 17 века. Непроводники (Диэлектрики) -эбонит -янтарь Фарфор резина. Из диэлектриков. ЭЛЕКТРОН(греч.)-ЯНТАРЬ. Заряды не исчезают и не появляются,а только перераспределяются между двумя телами. Изоляторы. Притягивают к себе соломинки,пушинки,мех. Трjение. Электризуются оба тела.

«Деятельность Ломоносова» - Обучение велось круглый год. : Литературная деятельность. Развитие деятельности Ломоносова. Ломоносову 300 лет. Новый период в жизни. Путешествие в Москву. Значение химии в жизни Ломоносова.







2024 © styletrack.ru.