Какие углы могут быть у многоугольника. Многоугольники. Подробная теория с примерами. Расчет значения углов в градах


Свойства многоугольников

Многоугольник - это геометрическая фигура, обычно определяется как замкнутая ломаная без самопересечений (простой многоугольник (рис. 1а)), однако иногда самопересечения допускаются (тогда многоугольник не является простым).

Вершины ломаной называются вершинами многоугольника, а отрезки - сторонами многоугольника. Вершины многоугольника называются соседними, если они являются концами одной из его сторон. Отрезки, соединяющие несоседние вершины многоугольника, называются диагоналями.

Углом (или внутренним углом) выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине, при этом угол считается со стороны многоугольника. В частности угол может превосходить 180° если многоугольник невыпуклый.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. В общем случае внешний угол это разница между 180° и внутренним углом. Из каждой вершины -угольника при > 3 выходят - 3 диагонали, поэтому общее число диагоналей -угольника равно.

Многоугольник с тремя вершинами называется треугольником, с четырьмя - четырёхугольником, с пятью - пятиугольником и т.д.

Многоугольник с n вершинами называется n- угольником.

Плоским многоугольником называется фигура, которая состоит из многоугольника и ограниченной им конечной части площади.

Многоугольник называют выпуклым, если выполнено одно из следующих (эквивалентных) условий:

  • 1. он лежит по одну сторону от любой прямой, соединяющей его соседние вершины. (т.е. продолжения сторон многоугольника не пересекают других его сторон);
  • 2. он является пересечением (т.е. общей частью) нескольких полуплоскостей;
  • 3. любой отрезок с концами в точках, принадлежащих многоугольнику, целиком ему принадлежит.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и пентагон.

Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности

Правильный многоугольник - это многоугольник, у которого все углы и все стороны равны между собой.

Свойства многоугольников:

1 Каждая диагональ выпуклого -угольника, где >3, разлагает его на два выпуклых многоугольника.

2 Сумма всех углов выпуклого -угольника равна.

Д-во: Теорему докажем методом математической индукции. При = 3 она очевидна. Предположим, что теорема верна для -угольника, где <, и докажем ее для -угольника.

Пусть- данный многоугольник. Проведем диагональ этого многоугольника. По теореме 3 многоугольник разложен на треугольник и выпуклый -угольник (рис. 5). По предположению индукции. С другой стороны, . Складывая эти равенства и учитывая, что ( - внутренний луч угла ) и (- внутренний луч угла), получаем.При получаем: .

3 Около любого правильного многоугольника можно описать окружность, и притом только одну.

Д-во: Пусть правильный многоугольник, а и - биссектрисы углов, и (рис. 150). Так как, то, следовательно, * 180° < 180°. Отсюда следует, что биссектрисы и углов и пересекаются в некоторой точке О. Докажем, что O = ОА 2 = О =… = ОА п . Треугольник О равнобедренный, поэтому О = О . По второму признаку равенства треугольников, следовательно, О = О . Аналогично доказывается, что О = О и т.д. Таким образом, точка О равноудалена от всех вершин многоугольника, поэтому окружность с центром О радиуса О является описанной около многоугольника.

Докажем теперь, что описанная окружность только одна. Рассмотрим какие-нибудь три вершины многоугольника, например, А 2 , . Так как через эти точки проходит только одна окружность, то около многоугольника нельзя описать более чем одну окружность.

  • 4 В любой правильный многоугольник можно вписать окружность и притом только одну.
  • 5 Окружность, вписанная в правильный многоугольник, касается сторон многоугольника в их серединах.
  • 6 Центр окружности, описанной около правильного многоугольника, совпадает с центром окружности, вписанной в тот же многоугольник.
  • 7 Симметрия:

Говорят, что фигура обладает симметрией (симметрична), если существует такое движение (не тождественное), переводящее эту фигуру в себя.

  • 7.1. Треугольник общего вида не имеет осей или центров симметрии, он несимметричен. Равнобедренный (но не равносторонний) треугольник имеет одну ось симметрии: серединный перпендикуляр к основанию.
  • 7.2. Равносторонний треугольник имеет три оси симметрии (серединные перпендикуляры к сторонам) и поворотную симметрию относительно центра с углом поворота 120°.

7.3 У любого правильного n-угольника есть n осей симметрии, все они проходят через его центр. Он также имеет поворотную симметрию относительно центра с углом поворота.

При четном n одни оси симметрии проходят через противоположные вершины, другие - через середины противоположных сторон.

При нечетном n каждая ось проходит через вершину и середину противоположной стороны.

Центр правильного многоугольника с четным числом сторон является его центром симметрии. У правильного многоугольника с нечетным числом сторон центра симметрии нет.

8 Подобие:

При подобии и -угольник переходит в -угольник, полуплоскость - в полуплоскость, поэтому выпуклый n -угольник переходит в выпуклый n -угольник.

Теорема: Если стороны и углы выпуклых многоугольников иудовлетворяют равенствам:

где - коэффициент подия

то эти многоугольники подобны.

  • 8.1 Отношение периметров двух подобных многоугольников равно коэффициенту подобия.
  • 8.2. Отношение площадей двух выпуклых подобных многоугольников равно квадрату коэффициента подобия.

многоугольник треугольник периметр теорема

Многоугольником называется геометрическая фигура, которая со всех сторон ограничена замкнутой ломаной линией. При этом количество звеньев ломаной не должно быть меньше трех. Каждая пара отрезков ломаной имеет общую точку и образует углы. Количество углов совместно с количеством отрезков ломаной являются основными характеристиками многоугольника. В каждом многоугольнике количество звеньев ограничивающей замкнутой ломаной совпадает с количеством углов.

Сторонами в геометрии принято называть звенья ломаной линии, которая ограничивает геометрический объект. Вершинами называют точки соприкосновения двух соседних сторон , по количеству которых получают свои названия многоугольники.

Если замкнутая ломаная состоит из трех отрезков, она носит название треугольника; соответственно, из четырех отрезков - четырехугольником, из пяти - пятиугольником и пр.

Для обозначения треугольника или четырехугольника пользуются заглавными латинскими буквами, обозначающими его вершины. Буквы называют по порядку - по часовой стрелке или против нее.

Основные понятия

Описывая определение многоугольника, следует учитывать некоторые смежные геометрические понятия:

  1. Если вершины являются концами одной стороны, они называются соседними.
  2. Если отрезок соединяет между собой несоседние вершины, то он имеет название диагонали. У треугольника не может быть диагоналей.
  3. Внутренний угол - это угол при одной из вершин, который образован двумя его сторонами, сходящимися в этой точке. Он всегда располагается во внутренней области геометрической фигуры. Если многоугольник невыпуклый, его размер может превосходить 180 градусов.
  4. Внешний угол при определенной вершине - это угол смежный с внутренним при ней же. Иными словами, внешним углом можно считать разность между 180° и величиной внутреннего угла.
  5. Сумма величин всех отрезков носит название периметра.
  6. Если все стороны и все углы равны - он носит название правильного. Правильными могут быть только выпуклые.

Как уже упоминалось выше, названия многоугольных геометрических строятся исходя из количества вершин. Если у фигуры их количество равняется n, она носит название n-угольника:

  1. Многоугольник называется плоским, если ограничивает конечную часть плоскости. Эта геометрическая фигура может быть вписанной в окружность или описанной вокруг окружности.
  2. Выпуклым называется n-угольник, который соответствует одному из условий, приведенных ниже.
  3. Фигура расположена по одну сторону от прямой линии, которая соединяет две соседних вершины.
  4. Эта фигура служит общей частью или пересечением нескольких полуплоскостей.
  5. Диагонали располагаются внутри многоугольника.
  6. Если концы отрезка располагаются в точках, которые принадлежат многоугольнику, весь отрезок принадлежит ему.
  7. Фигура может называться правильной, если у нее все отрезки и все углы равны. Примерами могут служить квадрат, равносторонний треугольник или правильный пятиугольник.
  8. Если n-угольник невыпуклый, все стороны и углы его равны, а вершины совпали с таковыми правильного n-угольника, он называется звездчатым. У таких фигур могут иметься самопересечения. Примерами могут служить пентаграмма или гексаграмма.
  9. Треугольник или четырехугольник называется вписанным в окружность, когда все его вершины располагаются внутри одной окружности. Если же стороны этой фигуры имеют точки соприкосновения с окружностью, это многоугольник описанным около некоторой окружности.

Любой выпуклый n-угольник можно поделить на треугольники . При этом количество треугольников бывает меньше количества сторон на 2.

Виды фигур

Это многоугольник с тремя вершинами и тремя отрезками, соединяющими их. При этом точки соединения отрезков не лежат на одной прямой.

Точки соединения отрезков - это вершины треугольника . Сами отрезки называются сторонами треугольника. Общая сумма внутренних углов каждого треугольника равняется 180°.

По соотношениям между сторонами все треугольники можно подразделять на несколько видов:

  1. Равносторонние - у которых длина всех отрезков одинаковая.
  2. Равнобедренные - треугольники, у которых равны два отрезка из трех.
  3. Разносторонние - если длина всех отрезков разная.

Кроме того, принято различать следующие треугольники:

  1. Остроугольные.
  2. Прямоугольные.
  3. Тупоугольные.

Четырехугольник

Четырехугольником называется плоская фигура, имеющая 4 вершины и 4 отрезка, которые их последовательно соединяют.

  1. Если все углы четырехугольника прямые - эта фигура называется прямоугольником.
  2. Прямоугольник, у которого все стороны имеют одинаковую величину, называется квадратом.
  3. Четырехугольник, все стороны которого равны, называется ромбом.

На одной прямой не может находиться сразу три вершины четырехугольника.

Видео

Дополнительную информацию о многоугольниках вы найдете в этом видео.

Треугольник, квадрат, шестиугольник - эти фигуры известны практически всем. Но вот о том, что такое правильный многоугольник, знает далеко не каждый. А ведь это все те же Правильным многоугольником называют тот, что имеет равные между собой углы и стороны. Таких фигур очень много, но все они имеют одинаковые свойства, и к ним применимы одни и те же формулы.

Свойства правильных многоугольников

Любой правильный многоугольник, будь то квадрат или октагон, может быть вписан в окружность. Это основное свойство часто используется при построении фигуры. Кроме того, окружность можно и вписать в многоугольник. При этом количество точек соприкосновения будет равняться количеству его сторон. Немаловажно, что окружность, вписанная в правильный многоугольник, будет иметь с ним общий центр. Эти геометрические фигуры подчинены одним теоремам. Любая сторона правильного n-угольника связана с радиусом описанной около него окружности R. Поэтому ее можно вычислить, используя следующую формулу: а = 2R ∙ sin180°. Через можно найти не только стороны, но и периметр многоугольника.

Как найти число сторон правильного многоугольника

Любой состоит из некоторого числа равных друг другу отрезков, которые, соединяясь, образуют замкнутую линию. При этом все углы образовавшейся фигуры имеют одинаковое значение. Многоугольники делятся на простые и сложные. К первой группе относятся треугольник и квадрат. Сложные многоугольники имеют большее число сторон. К ним также относят звездчатые фигуры. У сложных правильных многоугольников стороны находят путем вписывания их в окружность. Приведем доказательство. Начертите правильный многоугольник с произвольным числом сторон n. Опишите вокруг него окружность. Задайте радиус R. Теперь представьте, что дан некоторый n-угольник. Если точки его углов лежат на окружности и равны друг другу, то стороны можно найти по формуле: a = 2R ∙ sinα: 2.

Нахождение числа сторон вписанного правильного треугольника

Равносторонний треугольник - это правильный многоугольник. Формулы к нему применяются те же, что и к квадрату, и n-угольнику. Треугольник будет считаться правильным, если у него одинаковые по длине стороны. При этом углы равны 60⁰. Построим треугольник с заданной длиной сторон а. Зная его медиану и высоту, можно найти значение его сторон. Для этого будем использовать способ нахождения через формулу а = х: cosα, где х - медиана или высота. Так как все стороны треугольника равны, то получаем а = в = с. Тогда верным будет следующее утверждение а = в = с = х: cosα. Аналогично можно найти значение сторон в равнобедренном треугольнике, но х будет заданная высота. При этом проецироваться она должна строго на основание фигуры. Итак, зная высоту х, найдем сторону а равнобедренного треугольника по формуле а = в = х: cosα. После нахождения значения а можно вычислить длину основания с. Применим теорему Пифагора. Будем искать значение половины основания c: 2=√(х: cosα)^2 - (х^2) = √x^2 (1 - cos^2α) : cos^2α = x ∙ tgα. Тогда c = 2xtgα. Вот таким несложным способом можно найти число сторон любого вписанного многоугольника.

Вычисление сторон квадрата, вписанного в окружность

Как и любой другой вписанный правильный многоугольник, квадрат имеет равные стороны и углы. К нему применяются те же формулы, что и к треугольнику. Вычислить стороны квадрата можно через значение диагонали. Рассмотрим этот способ более детально. Известно, что диагональ делит угол пополам. Изначально его значение было 90 градусов. Таким образом, после деления образуются два Их углы при основании будут равны 45 градусов. Соответственно каждая сторона квадрата будет равна, то есть: а = в = с = д = е ∙ cosα = е√2: 2, где е - это диагональ квадрата, или основание образовавшегося после деления прямоугольного треугольника. Это не единственный способ нахождения сторон квадрата. Впишем эту фигуру в окружность. Зная радиус этой окружности R, найдем сторону квадрата. Будем вычислять ее следующим образом a4 = R√2. Радиусы правильных многоугольников вычисляют по формуле R = а: 2tg (360 o: 2n), где а - длина стороны.

Как вычислить периметр n-угольника

Периметром n-угольника называют сумму всех его сторон. Вычислить его несложно. Для этого необходимо знать значения всех сторон. Для некоторых видов многоугольников существуют специальные формулы. Они позволяют найти периметр намного быстрее. Известно, что любой правильный многоугольник имеет равные стороны. Поэтому для того, чтобы вычислить его периметр, достаточно знать хотя бы одну из них. Формула будет зависеть от количества сторон фигуры. В общем, она выглядит так: Р = an, где а - значение стороны, а n - количество углов. Например, чтобы найти периметр правильного восьмиугольника со стороной 3 см, необходимо умножить ее на 8, то есть Р = 3 ∙ 8 = 24 см. Для шестиугольника со стороной 5 см вычисляем так: Р = 5 ∙ 6 = 30 см. И так для каждого многоугольника.

Нахождение периметра параллелограмма, квадрата и ромба

В зависимости от того, сколько сторон имеет правильный многоугольник, вычисляется его периметр. Это намного облегчает поставленную задачу. Ведь в отличие от прочих фигур, в этом случае не нужно искать все его стороны, достаточно одной. По этому же принципу находим периметр у четырехугольников, то есть у квадрата и ромба. Несмотря на то что это разные фигуры, формула для них одна Р = 4а, где а - сторона. Приведем пример. Если сторона ромба или квадрата равна 6 см, то находим периметр следующим образом: Р = 4 ∙ 6 = 24 см. У параллелограмма равны только противоположные стороны. Поэтому его периметр находят, используя другой способ. Итак, нам необходимо знать длину а и ширину в фигуры. Затем применяем формулу Р = (а + в) ∙ 2. Параллелограмм, у которого равны все стороны и углы между ними, называется ромб.

Нахождение периметра равностороннего и прямоугольного треугольника

Периметр правильного можно найти по формуле Р = 3а, где а - длина стороны. Если она неизвестна, ее можно найти через медиану. В прямоугольном треугольнике равное значение имеют только две стороны. Основание можно найти через теорему Пифагора. После того как станут известны значения всех трех сторон, вычисляем периметр. Его можно найти, применяя формулу Р = а + в + с, где а и в - равные стороны, а с - основание. Напомним, что в равнобедренном треугольнике а = в = а, значит, а + в = 2а, тогда Р = 2а + с. Например, сторона равнобедренного треугольника равна 4 см, найдем его основание и периметр. Вычисляем значение гипотенузы по теореме Пифагора с = √а 2 + в 2 = √16+16 = √32 = 5,65 см. Вычислим теперь периметр Р = 2 ∙ 4 + 5,65 = 13,65 см.

Как найти углы правильного многоугольника

Правильный многоугольник встречается в нашей жизни каждый день, например, обычный квадрат, треугольник, восьмиугольник. Казалось бы, нет ничего проще, чем построить эту фигуру самостоятельно. Но это просто только на первый взгляд. Для того чтобы построить любой n-угольник, необходимо знать значение его углов. Но как же их найти? Еще ученые древности пытались построить правильные многоугольники. Они догадались вписать их в окружности. А потом на ней отмечали необходимые точки, соединяли их прямыми линиями. Для простых фигур проблема построения была решена. Формулы и теоремы были получены. Например, Эвклид в своем знаменитом труде «Начало» занимался решением задач для 3-, 4-, 5-, 6- и 15-угольников. Он нашел способы их построения и нахождения углов. Рассмотрим, как это сделать для 15-угольника. Сначала необходимо рассчитать сумму его внутренних углов. Необходимо использовать формулу S = 180⁰(n-2). Итак, нам дан 15-угольник, значит, число n равно 15. Подставляем известные нам данные в формулу и получаем S = 180⁰(15 - 2) = 180⁰ х 13 = 2340⁰. Мы нашли сумму всех внутренних углов 15-угольника. Теперь необходимо получить значение каждого из них. Всего углов 15. Делаем вычисление 2340⁰: 15 = 156⁰. Значит, каждый внутренний угол равен 156⁰, теперь при помощи линейки и циркуля можно построить правильный 15-угольник. Но как быть с более сложными n-угольниками? Много веков ученые бились над решением этой проблемы. Оно было найдено только лишь в 18-м веке Карлом Фридрихом Гауссом. Он смог построить 65537-угольник. С этих пор проблема официально считается полностью решенной.

Расчет углов n-угольников в радианах

Конечно, есть несколько способов нахождения углов многоугольников. Чаще всего их вычисляют в градусах. Но можно выразить их и в радианах. Как это сделать? Необходимо действовать следующим образом. Сначала выясняем число сторон правильного многоугольника, затем вычитаем из него 2. Значит, мы получаем значение: n - 2. Умножьте найденную разность на число п («пи» = 3,14). Теперь остается только разделить полученное произведение на число углов в n-угольнике. Рассмотрим данные вычисления на примере все того же пятнадцатиугольника. Итак, число n равно 15. Применим формулу S = п(n - 2) : n = 3,14(15 - 2) : 15 = 3,14 ∙ 13: 15 = 2,72. Это, конечно же, не единственный способ рассчитать угол в радианах. Можно просто разделить размер угла в градусах на число 57,3. Ведь именно столько градусов эквивалентно одному радиану.

Расчет значения углов в градах

Помимо градусов и радиан, значение углов правильного многоугольника можно попробовать найти в градах. Делается это следующим образом. Из общего количества углов вычитаем 2, делим полученную разность на число сторон правильного многоугольника. Найденный результат умножаем на 200. К слову сказать, такая единица измерения углов, как грады, практически не используется.

Расчет внешних углов n-угольников

У любого правильного многоугольника, кроме внутреннего, можно вычислить еще и внешний угол. Его значение находят так же, как и для остальных фигур. Итак, чтобы найти внешний угол правильного многоугольника, необходимо знать значение внутреннего. Далее, нам известно, что сумма этих двух углов всегда равна 180 градусам. Поэтому вычисления делаем следующим образом: 180⁰ минус значение внутреннего угла. Находим разность. Она и будет равняться значению смежного с ним угла. Например, внутренний угол квадрата равен 90 градусов, значит, внешний будет составлять 180⁰ - 90⁰ = 90⁰. Как мы видим, найти его несложно. Внешний угол может принимать значение от +180⁰ до, соответственно, -180⁰.

Виды многоугольников:

Четырехугольники

Четырехугольники , соответственно, состоят из 4-х сторон и углов.

Стороны и углы, расположенные напротив друг друга, называются противоположными .

Диагонали делят выпуклые четырехугольники на треугольники (см. на рисунке).

Сумма углов выпуклого четырехугольника равна 360° (по формуле: (4-2)*180°).

Параллелограммы

Параллелограмм - это выпуклый четырехугольник с противоположными параллельными сторонами (на рис. под номером 1).

Противоположные стороны и углы в параллелограмме всегда равны.

А диагонали в точке пересечения делятся пополам.

Трапеции

Трапеция - это тоже четырехугольник, и в трапеции параллельны только две стороны, которые называются основаниями . Другие стороны - это боковые стороны .

Трапеция на рисунке под номером 2 и 7.

Как и в треугольнике:

Если боковые стороны равны, то трапеция - равнобедренная ;

Если один из углов прямой, то трапеция - прямоугольная.

Средняя линия трапеции равна полусумме оснований и параллельна им.

Ромб

Ромб - это параллелограмм, у которого все стороны равны.

Помимо свойств параллелограмма, ромбы имеют своё особое свойство - диагонали ромба перпендикулярны друг другу и делят углы ромба пополам .

На рисунке ромб под номером 5.

Прямоугольники

Прямоугольник - это параллелограмм, у которого каждый угол прямой (см. на рис. под номером 8).

Помимо свойств параллелограмма, прямоугольники имеют своё особое свойство - диагонали прямоугольника равны .

Квадраты

Квадрат - это прямоугольник, у которого все стороны равны (№4).

Обладает свойствами прямоугольника и ромба (так как все стороны равны).

Тема: «Многоугольники.Виды многоугольников»

9 класс

ШЛ №20

Учитель: Харитонович Т.И. Цель урока: исследование видов многоугольников.

Обучающая задача: актуализировать, расширить и обобщить знания учащихся о многоугольниках; сформировать представление о “составных частях” многоугольника; провести исследование количества составных элементов правильных многоугольников (от треугольника до n – угольника);

Развивающая задача: развивать умения анализировать, сравнивать, делать выводы, развивать вычислительные навыки, устную и письменную математическую речь, память, а также самостоятельность в мышлении и учебной деятельности, умение работать в парах и группах; развивать исследовательскую и познавательную деятельность;

Воспитательная задача: воспитывать самостоятельность, активность, ответственность за порученное дело, упорство в достижении поставленной цели.

Оборудование: интерактивная доска (презентация)

Ход урока

Показ презентации: «Многоугольники»

“Природа говорит языком математики, буквы этого языка … математические фигуры”. Г.Галлилей

В начале урока класс делится на рабочие группы (в нашем случае деление на3 группы)

1.Стадия вызова-

а) актуализация знаний учащихся по теме;

б) пробуждение интереса к изучаемой теме, мотивация каждого ученика к учебной деятельности.

Прием: Игра “Верите ли вы в то, что…”, организация работы с текстом.

Формы работы: фронтальная, групповая.

“Верите ли вы в то, что ….”

1. … слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”?

2. … треугольник относится к большому семейству многоугольников, выделяемых среди ножества различных геометрических фигур на плоскости?

3. … квадрат – это правильный восьмиугольник (четыре стороны + четыре угла)?

Сегодня на уроке речь пойдет о многоугольниках. Мы узнаем, что эта фигура ограничена замкнутой ломаной, которая в свою очередь бывает простой, замкнутой. Поговорим о том, что многоугольники бывают плоскими, правильными, выпуклыми. Один из плоских многоугольников – треугольник, с которым вы давно и хорошо знакомы (можно продемонстрировать учащимся плакаты с изображением многоугольников, ломаной, показать их различные виды, также можно воспользоваться и ТСО).

2. Стадия осмысления

Цель: получение новой информации, ее осмысление, отбор.

Прием: зигзаг.

Формы работы: индивидуальная->парная->групповая.

Каждому из группы выдается текст по теме урока, причем текст составлен таким образом, что он включает в себя как информацию уже известную учащимся, так и информацию абсолютно новую. Вместе с текстом учащиеся получают вопросы, ответы на которые необходимо в этом тексте найти.

Многоугольники. Виды многоугольников.

Кто не слышал о загадочном Бермудском треугольнике, в котором бесследно исчезают корабли и самолеты? А ведь знакомый нам с детства треугольник таит в себе немало интересного и загадочного.

Помимо уже известных нам видов треугольников, разделяемых по сторонам (разносторонний, равнобедренный, равносторонний) и углам (остроугольный, тупоугольный, прямоугольный) треугольник относится к большому семейству многоугольников, выделяемых среди множества различных геометрических фигур на плоскости.

Слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”. Но для характеристики фигуры этого не достаточно.

Ломаной А1А2…Аn называется фигура, которая состоит из точек А1,А2,…Аn и соединяющих их отрезков А1А2, А2А3,…. Точки называются вершинами ломаной, а отрезки звеньями ломаной. (РИС.1)

Ломаная называется простой, если она не имеет самопересечений (рис.2,3).

Ломаная называется замкнутой, если у нее концы совпадают. Длиной ломаной называется сумма длин ее звеньев (рис.4)

Простая замкнутая ломаная называется многоугольником, если ее соседние звенья не лежат на одной прямой (рис.5).

Подставьте в слове “многоугольник” вместо части “много” конкретное число, например 3. Вы получите треугольник. Или 5. Тогда - пятиугольник. Заметим, что, сколько углов, столько и сторон, поэтому эти фигуры вполне можно было бы назвать и многосторонниками.

Вершины ломаной называются вершинами многоугольника, а звенья ломаной – сторонами многоугольника.

Многоугольник разбивает плоскость на две области: внутреннюю и внешнюю (рис.6).

Плоским многоугольником или многоугольной областью называется конечная часть плоскости, ограниченная многоугольником.

Две вершины многоугольника являющиеся концами одной стороны называются соседними. Вершины, не являющиеся концами одной стороны – несоседние.

Многоугольник с n вершинами, а значит, и с n сторонами называется n-угольником.

Хотя наименьшее число сторон многоугольника – 3. Но треугольники, соединяясь, друг с другом, могут образовывать другие фигуры, которые в свою очередь также являются многоугольниками.

Отрезки, соединяющие не соседние вершины многоугольника, называются диагоналями.

Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой, содержащей его сторону. При этом сама прямая считается принадлежащей ПОЛУПЛОСКОСТИ

Углом выпуклого многоугольника при данной вершине называется угол, образованный его сторонами, сходящимися в этой вершине.

Докажем теорему (о сумме углов выпуклого n – угольника): Сумма углов выпуклого n – угольника равна 1800*(n - 2).

Доказательство. В случае n=3 теорема справедлива. Пусть А1А2…А n – данный выпуклый многоугольник и n>3. Проведем в нем (из одной вершины) диагонали. Так как многоугольник выпуклый, то эти диагонали разбивают его на n – 2 треугольника. Сумма углов многоугольника совпадает с суммой углов всех этих треугольников. Сумма углов каждого треугольника равна 1800, а число этих треугольников n – 2. Поэтому сумма углов выпуклого n – угольника А1А2…А n равна 1800* (n - 2). Теорема доказана.

Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине.

Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны.

Так что квадрат можно назвать по-другому – правильным четырехугольником. Равносторонние треугольники также являются правильными. Такие фигуры давно интересовали мастеров, украшавших здания. Из них получались красивые узоры, например на паркете. Но не из всех правильных многоугольников можно было сложить паркет. Из правильных восьмиугольников паркет сложить нельзя. Дело в том, что у них каждый угол равен 1350.И если какая – нибудь точка является вершиной двух таких восьмиугольников, то на их долю придется 2700 , и третьему восьмиугольнику там поместиться негде: 3600 - 2700 =900 .Но для квадрата этого достаточно. Поэтому можно сложить паркет из правильных восьмиугольников и квадратов.

Правильными бывают и звезды. Наша пятиконечная звезда – правильная пятиугольная звезда. А если повернуть квадрат вокруг центра на 450 , то получится правильная восьмиугольная звезда.

Что называется ломаной? Объясните, что такое вершины и звенья ломаной.

Какая ломаная называется простой?

Какая ломаная называется замкнутой?

Что называется многоугольником? Что называется вершинами многоугольника? Что называется сторонами многоугольника?

Какой многоугольник называется плоским? Приведите примеры многоугольников.

Что такое n – угольник?

Объясните, какие вершины многоугольника – соседние, а какие нет.

Что такое диагональ многоугольника?

Какой многоугольник называется выпуклым?

Объясните, какие углы многоугольника внешние, а какие внутренние?

Какой многоугольник называется правильным? Приведите примеры правильных многоугольников.

Чему равна сумма углов выпуклого n-угольника? Докажите.

Учащиеся работают с текстом, ищут ответы на поставленные вопросы, после чего формируются экспертные группы, работа в которых идет по одним и тем же вопросам: учащиеся выделяют главное, составляют опорный конспект, представляют информацию одной из графических форм. По окончании работы учащиеся возвращаются в свои рабочие группы.

3.Стадия рефлексии-

а) оценка своих знаний, вызов к следующему шагу познания;

б) осмысление и присвоение полученной информации.

Прием: исследовательская работа.

Формы работы: индивидуальная->парная->групповая.

В рабочих группах оказываются специалисты по ответам на каждый из разделов предложенных вопросов.

Вернувшись в рабочую группу, эксперт знакомит других членов группы с ответами на свои вопросы. В группе происходит обмен информацией всех участников рабочей группы. Таким образом, в каждой рабочей группе, благодаря работе экспертов, складывается общее представление по изучаемой теме.

Исследовательская работа учащихся – заполнение таблицы.

Правильные многоугольники Чертеж Кол-во сторон Кол-во вершин Сумма всех внутр.углов Градусная мера внутр. угла Градусная мера внешн.угла Количество диагоналей

А)треугольник

Б) четырехугольник

В)пятиуГольник

Г) шестиугольник

Д) n-угольник

Решение интересных задач по теме урока.

1)Сколько сторон имеет правильный многоугольник, каждый из внутренних углов которого равен 1350?

2)В некотором многоугольнике все внутренние углы равны между собой. Может ли сумма внутренних углов этого многоугольника равняться: 3600, 3800?

3)Можно ли построить пятиугольник с углами 100,103,110,110,116 градусов?

Подведение итогов урока.

Запись домашнего задания: СТР66-72 №15,17 И ЗАДАЧА:в ЧЕТЫРЕХУГОЛЬНИКЕ, ПРОВЕДИТЕ ПРЯМУЮ ТАК, ЧТОБЫ ОНА РАЗДЕЛИЛА ЕГО НА ТРИ ТРЕУГОЛЬНИКА.

Рефлексия в виде тестов (на интерактивной доске)







2024 © styletrack.ru.