Как построить i d диаграмму. I-d диаграмма для начинающих (ID диаграмма состояния влажного воздуха для чайников). Определение параметров влажного воздуха на Id диаграмме


После прочтения данной статьи, рекомендую прочитать статью про энтальпию , скрытую холодопроизводительность и определение количества конденсата, образующегося в системах кондиционирования и осушения :

Доброго времени суток уважаемые начинающие коллеги!

В самом начале своего профессионального пути я наткнулся на данную диаграмму. При первом взгляде она может показаться страшноватой, но если разобраться в главных принципах, по которым она работает, то можно её и полюбить:D. В быту она называется и-д диаграмма.

В данной статье я попытаюсь просто(на пальцах) объяснить основные моменты, чтобы вы потом отталкиваясь от полученного фундамента самостоятельно углубились в данную паутину характеристик воздуха.

Примерно так она выглядит в учебниках. Как-то жутковато становится.


Я уберу все то лишнее, что не будет мне нужным для моего объяснения и представлю и-д диаграмму в таком виде:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Все равно еще не совсем понятно, что это такое. Разберем её на 4 элемента:

Первый элемент - влагосодержание (D или d). Но прежде чем я начну разговор об влажности воздуха в целом, я бы хотел кое о чем с вами договориться.

Давайте договоримся “на берегу” сразу об одном понятии. Избавимся от одного прочно засевшего в нас (по крайней мере, в меня) стереотипа о том, что такое пар. С самого детства мне показывали на кипящую кастрюлю или чайник и говорили, тыкая пальцем на валящий из сосуда “дым”: “ Смотри! Вот это пар”. Но как многие, дружащие с физикой люди, мы должны понимать, что “Водяной пар — газообразное состояние воды . Не имеет цвета , вкуса и запаха”. Это всего лишь, молекулы H2O в газообразном состоянии, которых не видно. А то что мы видим, валящее из чайника - это смесь воды в газообразном состоянии(пар) и “капелек воды в пограничном состоянии между жидкостью и газом”, вернее видим мы последнее (так же, с оговорками, можно назвать то что мы видим - туманом). В итоге мы получаем, что в данный момент, вокруг каждого из нас находится сухой воздух (смесь кислорода, азота…) и пар (H2O).

Так вот, влагосодержание говорит нам о том, сколько этого пара присутствует в воздухе. На большинстве и-д диаграмм данная величина измеряется в [г/кг], т.е. сколько грамм пара(H2O в газообразном состоянии) находится в одном килограмме воздуха (1 кубический метр воздуха в вашей квартире весит около 1,2 килограмма). В вашей квартире для комфортных условий в 1 килограмме воздуха должно быть 7-8 грамм пара.

На и-д диаграмме влагосодержание изображается вертикальными линиями, а информация о градации расположена в нижней части диаграммы:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Второй важный для понимания элемент - температура воздуха (T или t). Думаю здесь ничего объяснять не нужно. На большинстве и-д диаграмм данная величина измеряется в градусах Цельсия [°C]. На и-д диаграмме температура изображается наклонными линиями, а информация о градации расположена в левой части диаграммы:

(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Третий элемент ИД-диаграммы - относительная влажность (φ ). Относительная влажность, это как раз та влажность, о которой мы слышим из телевизоров и радио, когда слушаем прогноз погоды. Измеряется она в процентах [%].

Возникает резонный вопрос: “Чем отличается относительная влажность от влагосодержания?” На данный вопрос я отвечу поэтапно:

Первый этап:

Воздух способен вмещать в себя определенное количество пара. У воздуха есть определенная “паровая грузоподъемность”. Например, в вашей комнате килограмм воздуха может “взять на свой борт” не больше 15 грамм пара.

Предположим, что в вашей комнате комфортно, и в каждом килограмме воздуха, находящегося в вашей комнате, имеется по 8 грамм пара, а вместить каждый килограмм воздуха в себя может по 15 грамм пара. В итоге мы получаем, что в воздухе находится 53,3% пара от максимально возможного, т.е. относительная влажность воздуха - 53,3%.

Второй этап:

Вместимость воздуха различна при разных температурах. Чем выше температура воздуха, тем больше пара он может в себя вместить, чем ниже температура, тем меньше вместимость.

Предположим, что мы нагрели воздух в вашей комнате обычным нагревателем с +20 градусов до +30 градусов, но при этом количество пара в каждом килограмме воздуха осталось прежним - по 8 грамм. При +30 градусах воздух может “взять себе на борт” до 27 грамм пара, в итоге в нашем нагретом воздухе - 29,6% пара от максимально возможного, т.е. относительная влажность воздуха - 29,6%.

Тоже самое и с охлаждением. Если мы охладим воздух до +11 градусов, то мы получим “грузоподъемность” равную 8,2 грамм пара на килограмм воздуха и относительную влажность равную 97,6%.

Заметим, что влаги в воздухе было одинаковое количество - 8 грамм, а относительная влажность прыгала от 29,6% до 97,6%. Происходило это из-за скачков температуры.

Когда вы зимой слышите о погоде по радио, где говорят, что на улице минус 20 градусов и влажность 80%, то это значит, что в воздухе около 0,3 граммов пара. Попадая к вам в квартиру этот воздух нагревается до +20 и относительная влажность такого воздуха становится равна 2%, а это очень сухой воздух (на самом деле в квартире зимой влажность держится на уровне 10-30% благодаря выделениям влаги из сан-узлов, из кухни и от людей, но что тоже ниже параметров комфорта).

Третий этап:

Что произойдет, если мы опустим температуру до такого уровня, когда “грузоподъемность” воздуха будет ниже, чем количество пара в воздухе? Например, до +5 градусов, где вместимость воздуха равна 5,5 грамм/килограмм. Та часть газообразного H2O, которая не умещается в “кузов” (у нас это 2,5 грамм), начнет превращаться в жидкость, т.е. в воду. В быту особенно хорошо виден этот процесс, когда запотевают окна в связи с тем, что температура стекол ниже, чем средняя температура в комнате, на столько что влаге становится мало места в воздухе и пар, превращаясь в жидкость, оседает на стеклах.

На и-д диаграмме относительная влажность изображается изогнутыми линиями, а информация о градации расположена на самих линиях:


(для увеличения рисунка необходимо щелкнуть и потом еще раз щелкнуть по нему)

Четвертый элемент ID диаграммы - энтальпия (I или i). В энтальпии заложена энергетическая составляющая тепловлажностного состояния воздуха. При дальнейшем изучении (за пределами этой статьи, например в моей статье про энтальпию ) стоит обратить на неё особое внимание, когда речь будет заходить об осушении и увлажнении воздуха. Но пока особого внимания на этом элементе мы заострять не будем. Измеряется энтальпия в [кДж/кг]. На и-д диаграмме энтальпия изображается наклонными линиями, а информация о градации расположена на самом графике (или слева и в верхней части диаграммы).

Учитывая, что является основным объектом вентиляционного процесса, в области вентиляции приходится часто определять те или другие параметры воздуха. Чтобы избежать многочисленных вычислений, их определяют обычно по специальной диаграмме, которая носит название Id диаграммы. Она позволяет быстро определить все параметры воздуха по двум известным. Использование диаграммы позволяет избежать вычислений по формулам и наглядно отобразить вентиляционный процесс. Пример Id диаграммы приведен на следующей странице. Аналогом Id диаграммы на западе является диаграмма Молье или психрометрическая диаграмма.

Оформление диаграммы в принципе может быть несколько различным. Типовая общая схема Id диаграммы показана ниже на рисунке 3.1. Диаграмма представляет из себя рабочее поле в косоугольной системе координат Id, на котором нанесено несколько координатных сеток и по периметру диаграммы – вспомогательные шкалы. Шкала влагосодержаний обычно располагается по нижней кромке диаграммы, при этом линии постоянных влагосодержаний представляют вертикальные прямые. Линии постоянных представляют параллельные прямые, обычно идущие под углом 135° к вертикальным линиям влагосодержаний (в принципе, углы между линиями энтальпии и влагосодержания может быть и другим). Косоугольная система координат выбрана для того, чтобы увеличить рабочее поле диаграммы. В такой системе координат линии постоянных температур представляют из себя прямые линии, идущие под небольшим наклоном к горизонтали и слегка расходящиеся веером.

Рабочее поле диаграммы ограничено кривыми линиями равных относительных влажностей 0% и 100%, между которыми нанесены линии других значений равных относительных влажностей с шагом 10%.

Шкала температур обычно располагается по левой кромке рабочего поля диаграммы. Значения энтальпий воздуха нанесены обычно под кривой Ф= 100. Значения парциальных давлений иногда наносят по верхней кромке рабочего поля, иногда по нижней кромке под шкалой влагосодержаний, иногда по правой кромке. В последнем случае на диаграмме добавочно строят вспомогательную кривую парциальных давлений.

Определение параметров влажного воздуха на Id диаграмме.

Точка на диаграмме отражает некое состояние воздуха, а линия – процесс изменения состояния. Определение параметров воздуха, имеющего некое состояние, отображаемое точкой А, показано на рисунке 3.1.

I-d диаграмма влажного воздуха - диаграмма, широко используемая в расчетах систем вентиляции, кондиционирования , осушки и других процессов, связанных с изменением состояния влажного воздуха. Впервые была составлена в 1918 году советским инженером-теплотехником Леонидом Константиновичем Рамзиным.

Различные I-d диаграммы

I-d диаграмма влажного воздуха (Диаграмма Рамзина):

Описание диаграммы

I—d-диаграмма влажного воздуха графически связывает все параметры, определяющие тепловлажностное состояние воздуха: энтальпию, влагосодержание, температуру, относительную влажность, парциальное давление водяных паров. Диаграмма построена в косоугольной системе координат, что позволяет расширить область ненасыщенного влажного воздуха и делает диаграмму удобной для графических построений. По оси ординат диаграммы отложены значения энтальпии I, кДж/кг сухой части воздуха, по оси абсцисс, направленной под углом 135° к оси I, отложены значения влагосодержания d, г/кг сухой части воздуха.

Поле диаграммы разбито линиями постоянных значений энтальпии I = const и влагосодержания d = const. На него нанесены также линии постоянных значений температуры t = const, которые не параллельны между собой — чем выше температура влажного воздуха, тем больше отклоняются вверх его изотермы. Кроме линий постоянных значений I, d, t, на поле диаграммы нанесены линии постоянных значений относительной влажности воздуха φ = const. В нижней части I—d-диаграммы расположена кривая, имеющая самостоятельную ось ординат. Она связывает влагосодержание d, г/кг, с упругостью водяного пара pп, кПа. Ось ординат этого графика является шкалой парциального давления водяного пара pп.

Диаграмма влажного воздуха дает графическое представление о связи параметров влажного воздуха и является основной для определения параметров состояния воздуха и расчета процессов тепловлажностной обработки.

В I-d диаграмме (рис. 2) по оси абсцисс откладывается влагосодержание d г/кг сухого воздуха, а по оси ординат − энтальпия I влажного воздуха. На диаграмме нанесены вертикальные прямые постоянного влагосодержания (d = const). За начало отсчета принята точка О, в которой t = 0 °С, d = 0 г/кг и, следовательно, I = 0 кДж/кг. При построении диаграммы использована косоугольная система координат для увеличения области ненасыщенного воздуха. Угол между направлением осей 135° или 150°. Для удобства пользования под углом 90º к оси энтальпий проводят условную ось влагосодержаний. Диаграмма строится для постоянного барометрического давления. Пользуются I-d диаграммами, построенными для атмосферного давления р б = 99,3 кПа (745 мм.рт.ст) и атмосферного давления р б = 101,3 кПа (760 мм.рт.ст).

На диаграмму нанесены изотермы (t с = const) и кривые относительной влажности (φ = const). Уравнение (16) показывает, что изотермы в I-d диаграмме − прямые линии. Все поле диаграммы линией φ = 100% разделено на две части. Выше этой линии расположена область ненасыщенного воздуха. На линии φ = 100% находятся параметры насыщенного воздуха. Ниже этой линии располагаются параметры состояния насыщенного воздуха, содержащего взвешенную капельную влагу (туман).

Для удобства работы в нижней части диаграммы строится зависимость, наносят линию парциального давления водяного пара р п от влагосодержания d. Шкала давлений располагается с правой стороны диаграммы. Каждая точка на I-d диаграмме соответствует определенному состоянию влажного воздуха.


Определение параметров влажного воздуха по I-d диаграмме. Метод определения параметров показан на рис. 2. Положение точки А определяется двумя параметрами, например, температурой t А и относительной влажностью φ А. Графически определяем: температуру сухого термометра t с, влагосодержание d А, энтальпию I А. Температура точки росы t р определяется как температура точки пересечения линии d А = const с линией φ = 100 % (точка Р). Параметры воздуха в состоянии полного насыщения влагой определяются на пересечении изотермы t А с линией φ = 100 % (точка Н).

Процесс увлажнения воздуха без подвода и отвода теплоты будет проходить при постоянной энтальпии I А = const (процесс А-М). На пересечения линии I А = const с линией φ = 100 % (точка М) находим температуру мокрого термометра t м (линия постоянной энтальпии практически совпадает с изотермой
t м = const). В ненасыщенном влажном воздухе температура мокрого термометра меньше температуры сухого термометра.

Парциальное давление водяного пара p П находим, проведя из точки А линию d А = const до пересечения с линией парциального давления.

Разность температур t с – t м = Δt пс называется психрометрической, а разность температур t с – t р гигрометрической.

hd-диаграмма влажного воздуха (рис. 14.1), предложенная в 1918 г.

Рис.14.1. hd-диаграмма влажного воздуха

Л. К. Рамзиным, широко используется для решения практических задач в тех областях, где рабочим телом служит влажный воздух. По оси ординат откладывают энтальпию h, кДж/кг влажного воздухa, а по оси абсцисс влагосодержание d,г/кг с.в. Для удобства (сокращение площади диаграммы) ось абсцисс направлена под углом 135° к оси ординат. На данной диаграмме вместо наклонной оси абсцисс проведена горизонтальная линия, на которой нанесены действительные значения d.На hd-диаграмме линии h = const - это циклонные линии, а линии d = const - вертикальные прямые.

Из уравнения

следует, что в координатах hd изотермы изображаются прямыми линиями. Кроме того, на диаграмму наносят кривые φ = const.

Кривая φ = 100%делит поле на две области и является своего рода пограничной кривой: φ < 100% характеризует область ненасы-щенного влажного воздуха (в воздухе содержится перегретый пар); φ > 100% - область, в которой влага находится в воздухе час-тично в капельном состоянии;

φ - 100% характеризует насыщен-ный влажный воздух.

За начало отсчета параметров влажного воздуха выбирают точку 0,для которой Т = 273,15 К, d = 0, h = 0.

Любая точка на hd-диаграмме определяет физическое состоя-ние воздуха. Для этого должны быть заданы два параметра (например, φ и t или h u d). Изменение состояния влажного воз-духа изобразится на диаграмме линией процесса. Рассмотрим ряд примеров.

1) Процесс нагревания воздуха происходит при постоянном влагосодержании, так как количество пара в воздухе в данном случае не изменяется. На hd-диаграмме этот процесс изображается лини-ей 1-2 (рис.14.2). В данном процессе повышаются температура и энтальпия воздуха, и уменьшается его относительная влажность.

Рис. 14.2 Изображение на hd- диаграмме характерных процессов изменения состояния воздуха

2) Процесс охлаждения воздуха на участке над кривой φ-100%также протекает при постоянном влагосодержании (процесс 1-5). Если продолжать процесс охлаждения до точки 5" -неположенной на кривой φ-100%,то в этом состоянии влажный воздух будет насыщенным. Температура в точке 5 есть температу-ра точки росы. Дальнейшее охлаждение воздуха (ниже точки 5) приводит к конденсации части водяного пара.

3) В процессе адиабатного осушения воздуха конденсация влага
происходит за счет теплоты влажного воздуха без внешнего тепло-обмена. Этот процесс протекает при постоянной энтальпии (процесс 1-7), причем влагосодержание воздуха уменьшается, а температура его увеличивается.

4) Процесс адиабатного увлажнения воздуха, сопровождающий-ся увеличением влагосодержания воздуха и уменьшением его темпе-ратуры, изображен на диаграмме линией 1-4.

Процессы адиабатного увлажнения и осушения воздуха широко используются для обеспечения заданных параметров микроклима-та в сельскохозяйственных производственных помещениях.

5) Процесс осушения воздуха при постоянной температуре изображается линией 1-6, а процесс увлажнения воздуха при постоян-ной температуре - линией 1-3.







2024 © styletrack.ru.